Try a new search

Format these results:

Searched for:

person:renm01

in-biosketch:yes

Total Results:

69


The Basis for Acyl Specificity in the Tafazzin Reaction

Schlame, Michael; Xu, Yang; Ren, Mindong
Tafazzin is a mitochondrial enzyme that transfers fatty acids from phospholipids to lysophospholipids. Mutations in tafazzin cause abnormal molecular species of cardiolipin and the clinical phenotype of Barth syndrome. However, the mechanism by which tafazzin creates acyl specificity has been controversial. We have shown that the lipid phase state can produce acyl specificity in the tafazzin reaction but others have reported that tafazzin itself carries enzymatic specificity. To resolve this issue, we replicated and expanded the controversial experiments, i.e. the transfer of different acyl groups from phosphatidylcholine to monolyso-cardiolipin by yeast tafazzin. Our data show that this reaction requires the presence of detergent and does not take place in liposomes but in mixed micelles. In order to separate thermodynamic (lipid-dependent) from kinetic (enzyme-dependent) parameters, we followed the accumulation of cardiolipin during the reaction from the initial state to the equilibrium state. The transacylation rates of different acyl groups varied over 2 orders of magnitude and correlated tightly with the concentration of cardiolipin in the equilibrium state (lipid-dependent parameter). In contrast, the rates by which different transacylations approached the equilibrium state were very similar (enzyme-dependent parameter). Furthermore, we found that tafazzin catalyzes the remodeling of cardiolipin by combinations of forward and reverse transacylations, essentially creating an equilibrium distribution of acyl groups. These data strongly support the idea that the acyl specificity of the tafazzin reaction results from the physical properties of lipids.
PMCID:5392692
PMID: 28202545
ISSN: 1083-351x
CID: 2449242

Loss of protein association causes cardiolipin degradation in Barth syndrome

Xu, Yang; Phoon, Colin K L; Berno, Bob; D'Souza, Kenneth; Hoedt, Esthelle; Zhang, Guoan; Neubert, Thomas A; Epand, Richard M; Ren, Mindong; Schlame, Michael
Cardiolipin is a specific mitochondrial phospholipid that has a high affinity for proteins and that stabilizes the assembly of supercomplexes involved in oxidative phosphorylation. We found that sequestration of cardiolipin in protein complexes is critical to protect it from degradation. The turnover of cardiolipin is slower by almost an order of magnitude than the turnover of other phospholipids. However, in subjects with Barth syndrome, cardiolipin is rapidly degraded via the intermediate monolyso-cardiolipin. Treatments that induce supercomplex assembly decrease the turnover of cardiolipin and the concentration of monolyso-cardiolipin, whereas dissociation of supercomplexes has the opposite effect. Our data suggest that cardiolipin is uniquely protected from normal lipid turnover by its association with proteins, but this association is compromised in subjects with Barth syndrome, leading cardiolipin to become unstable, which in turn causes the accumulation of monolyso-cardiolipin.
PMCID:4955704
PMID: 27348092
ISSN: 1552-4469
CID: 2166952

Content of Plasmalogen Lipids Markedly Decreases in Barth Syndrome [Meeting Abstract]

Kimura, Tomohiro; Kimura, Atsuko; Berno, Bob; Ren, Mindong; Schlame, Michael; Epand, Richard M
ISI:000375093500427
ISSN: 1542-0086
CID: 2544872

Tafazzins from Drosophila and mammalian cells assemble in large protein complexes with a short half-life

Xu, Yang; Malhotra, Ashim; Claypool, Steven M; Ren, Mindong; Schlame, Michael
Tafazzin is a transacylase that affects cardiolipin fatty acid composition and mitochondrial function. Mutations in human tafazzin cause Barth syndrome yet the enzyme has mostly been characterized in yeast. To study tafazzin in higher organisms, we isolated mitochondria from Drosophila and mammalian cell cultures. Our data indicate that tafazzin binds to multiple protein complexes in these organisms, and that the interactions of tafazzin lack strong specificity. Very large tafazzin complexes could only be detected in the presence of cardiolipin, but smaller complexes remained intact even upon treatment with phospholipase A2. In mammalian cells, tafazzin had a half-life of only 3-6h, which was much shorter than the half-life of other mitochondrial proteins. The data suggest that tafazzin is a transient resident of multiple protein complexes.
PMCID:4693151
PMID: 25598000
ISSN: 1567-7249
CID: 1439892

Metabolism and function of mitochondrial cardiolipin

Ren, Mindong; Phoon, Colin K L; Schlame, Michael
Since it has been recognized that mitochondria are crucial not only for energy metabolism but also for other cellular functions, there has been a growing interest in cardiolipin, the specific phospholipid of mitochondrial membranes. Indeed, cardiolipin is a universal component of mitochondria in all eukaryotes. It has a unique dimeric structure comprised of two phosphatidic acid residues linked by a glycerol bridge, which gives rise to unique physicochemical properties. Cardiolipin plays an important role in the structural organization and the function of mitochondrial membranes. In this article, we review the literature on cardiolipin biology, focusing on the most important discoveries of the past decade. Specifically, we describe the formation, the migration, and the degradation of cardiolipin and we discuss how cardiolipin affects mitochondrial function. We also give an overview of the various phenotypes of cardiolipin deficiency in different organisms.
PMID: 24769127
ISSN: 0163-7827
CID: 932362

BARTH SYNDROME, A MITOCHONDRIAL DISEASE AFFECTING CARDIOLIPIN AND MEMBRANE CURVATURE [Meeting Abstract]

Xu, Y.; Ren, M.; Schlame, M.
ISI:000330441700068
ISSN: 0003-2999
CID: 816392

The physical state of lipid substrates provides transacylation specificity for tafazzin

Schlame, Michael; Acehan, Devrim; Berno, Bob; Xu, Yang; Valvo, Salvatore; Ren, Mindong; Stokes, David L; Epand, Richard M
Cardiolipin is a mitochondrial phospholipid with a characteristic acyl chain composition that depends on the function of tafazzin, a phospholipid-lysophospholipid transacylase, although the enzyme itself lacks acyl specificity. We incubated isolated tafazzin with various mixtures of phospholipids and lysophospholipids, characterized the lipid phase by (31)P-NMR and measured newly formed molecular species by MS. Substantial transacylation was observed only in nonbilayer lipid aggregates, and the substrate specificity was highly sensitive to the lipid phase. In particular, tetralinoleoyl-cardiolipin, a prototype molecular species, formed only under conditions that favor the inverted hexagonal phase. In isolated mitochondria, <1% of lipids participated in transacylations, suggesting that the action of tafazzin was limited to privileged lipid domains. We propose that tafazzin reacts with non-bilayer-type lipid domains that occur in curved or hemifused membrane zones and that acyl specificity is driven by the packing properties of these domains.
PMCID:3699345
PMID: 22941046
ISSN: 1552-4450
CID: 211022

Comparison of cardiolipins from Drosophila strains with mutations in putative remodeling enzymes

Schlame, Michael; Blais, Steven; Edelman-Novemsky, Irit; Xu, Yang; Montecillo, Fleurise; Phoon, Colin K L; Ren, Mindong; Neubert, Thomas A
Cardiolipin is a dimeric phospholipid with a characteristic acyl composition that is generated by fatty acid remodeling after de novo synthesis. Several enzymes have been proposed to participate in acyl remodeling of cardiolipin. In order to compare the effect of these enzymes, we determined the pattern of cardiolipin molecular species in Drosophila strains with specific enzyme deletions, using MALDI-TOF mass spectrometry with internal standards. We established the linear range of the method for cardiolipin quantification, determined the relative signal intensities of several cardiolipin standards, and demonstrated satisfying signal-to-noise ratios in cardiolipin spectra from a single fly. Our data demonstrate changes in the cardiolipin composition during the Drosophila life cycle. Comparison of cardiolipin spectra, using vector algebra, showed that inactivation of tafazzin had a large effect on the molecular composition of cardiolipin, inactivation of calcium-independent phospholipase A(2) had a small effect, whereas inactivation of acyl-CoA:lysocardiolipin-acyltransferase and of the trifunctional enzyme did not affect the cardiolipin composition.
PMID: 22465155
ISSN: 0009-3084
CID: 175766

Tafazzin knockdown in mice leads to a developmental cardiomyopathy with early diastolic dysfunction preceding myocardial noncompaction

Phoon, Colin K L; Acehan, Devrim; Schlame, Michael; Stokes, David L; Edelman-Novemsky, Irit; Yu, Dawen; Xu, Yang; Viswanathan, Nitya; Ren, Mindong
BACKGROUND: Barth syndrome is a rare, multisystem disorder caused by mutations in tafazzin that lead to cardiolipin deficiency and mitochondrial abnormalities. Patients most commonly develop an early-onset cardiomyopathy in infancy or fetal life. METHODS AND RESULTS: Knockdown of tafazzin (TAZKD) in a mouse model was induced from the start of gestation via a doxycycline-inducible shRNA transgenic approach. All liveborn TAZKD mice died within the neonatal period, and in vivo echocardiography revealed prenatal loss of TAZKD embryos at E12.5-14.5. TAZKD E13.5 embryos and newborn mice demonstrated significant tafazzin knockdown, and mass spectrometry analysis of hearts revealed abnormal cardiolipin profiles typical of Barth syndrome. Electron microscopy of TAZKD hearts demonstrated ultrastructural abnormalities in mitochondria at both E13.5 and newborn stages. Newborn TAZKD mice exhibited a significant reduction in total mitochondrial area, smaller size of individual mitochondria, reduced cristae density, and disruption of the normal parallel orientation between mitochondria and sarcomeres. Echocardiography of E13.5 and newborn TAZKD mice showed good systolic function, but early diastolic dysfunction was evident from an abnormal flow pattern in the dorsal aorta. Strikingly, histology of E13.5 and newborn TAZKD hearts showed myocardial thinning, hypertrabeculation and noncompaction, and defective ventricular septation. Altered cellular proliferation occurring within a narrow developmental window accompanied the myocardial hypertrabeculation-noncompaction. CONCLUSIONS: In this murine model, tafazzin deficiency leads to a unique developmental cardiomyopathy characterized by ventricular myocardial hypertrabeculation-noncompaction and early lethality. A central role of cardiolipin and mitochondrial functioning is strongly implicated in cardiomyocyte differentiation and myocardial patterning required for heart development. (J Am Heart Assoc. 2012;1:jah3-e000455 doi: 10.1161/JAHA.111.000455.).
PMCID:3487377
PMID: 23130124
ISSN: 2047-9980
CID: 180952

Reconstitution of Acyl Specific Phospholipid Remodeling by Purified Tafazzin In Vitro [Meeting Abstract]

Schlame, Michael; Acehan, Devrim; Berno, Bob; Xu, Yang; Ren, Mindong; Stokes, David L; Epand, Richard M
ISI:000321561202053
ISSN: 0006-3495
CID: 2544862