Try a new search

Format these results:

Searched for:

person:rosenj03

in-biosketch:yes

Total Results:

122


Permeability of the paranodal junction of myelinated nerve fibers

Mierzwa, Amanda; Shroff, Seema; Rosenbluth, Jack
We have used fluorescent dextran tracers to test the tightness of the paranodal junction of living or fixed myelinated fibers in mouse sciatic nerve. Both 3 and 70 kDa tracers are able to penetrate from the perinodal space symmetrically into the paranodes on either side of the node of Ranvier at a rate consistent with diffusion through an elongated helical pathway between the paranodal terminal loops of the myelin sheath. This pathway thus provides an access route for movement of water soluble nutrients and metabolites to and from the internodal axon and constitutes a pathway through which juxtaparanodal potassium channels may be activated and may in turn affect nodal excitability. This pathway may also allow access of antibodies and toxic molecules to the internodal axon in paraneoplastic syndromes and demyelinating diseases
PMCID:3001347
PMID: 21106834
ISSN: 1529-2401
CID: 114849

Role of transverse bands in maintaining paranodal structure and axolemmal domain organization in myelinated nerve fibers: Effect on longevity in dysmyelinated mutant mice

Mierzwa, Amanda J; Arevalo, Juan-Carlos; Schiff, Rolf; Chao, Moses V; Rosenbluth, Jack
The consequences of dysmyelination are poorly understood and vary widely in severity. The shaking mouse, a quaking allele, is characterized by severe central nervous system (CNS) dysmyelination and demyelination, a conspicuous action tremor, and seizures in approximately 25% of animals, but with normal muscle strength and a normal lifespan. In this study we compare this mutant with other dysmyelinated mutants including the ceramide sulfotransferase deficient (CST-/-) mouse, which are more severely affected behaviorally, to determine what might underlie the differences between them with respect to behavior and longevity. Examination of the paranodal junctional region of CNS myelinated fibers shows that 'transverse bands,' a component of the junction, are present in nearly all shaking paranodes but in only a minority of CST-/- paranodes. The number of terminal loops that have transverse bands within a paranode and the number of transverse bands per unit length are only moderately reduced in the shaking mutant, compared with controls, but markedly reduced in CST-/- mice. Immunofluorescence studies also show that although the nodes of the shaking mutant are somewhat longer than normal, Na(+) and K(+) channels remain separated, distinguishing this mutant from CST-/- mice and others that lack transverse bands. We conclude that the essential difference between the shaking mutant and others more severely affected is the presence of transverse bands, which serve to stabilize paranodal structure over time as well as the organization of the axolemmal domains, and that differences in the prevalence of transverse bands underlie the marked differences in progressive neurological impairment and longevity among dysmyelinated mouse mutants. J. Comp. Neurol. 518:2841-2853, 2010. (c) 2010 Wiley-Liss, Inc
PMCID:2879089
PMID: 20506478
ISSN: 1096-9861
CID: 109814

The ultrastructure and contractile properties of a fast-acting, obliquely striated, myosin-regulated muscle: the funnel retractor of squids

Rosenbluth, Jack; Szent-Gyorgyi, Andrew G; Thompson, Joseph T
We investigated the ultrastructure, contractile properties, and in vivo length changes of the fast-acting funnel retractor muscle of the long-finned squid Doryteuthis pealeii. This muscle is composed of obliquely striated, spindle-shaped fibers ~3 mum across that have an abundant sarcoplasmic reticulum, consisting primarily of membranous sacs that form 'dyads' along the surface of each cell. The contractile apparatus consists of 'myofibrils' approximately 0.25-0.5 microm wide in cross section arrayed around the periphery of each cell, surrounding a central core that contains the nucleus and large mitochondria. Thick myofilaments are approximately 25 nm in diameter and approximately 2.8 microm long. 'Dense bodies' are narrow, resembling Z lines, but are discontinuous and are not associated with the cytoskeletal fibrillar elements that are so prominent in slower obliquely striated muscles. The cells approximate each other closely with minimal intervening intercellular connective tissue. Our physiological experiments, conducted at 17 degrees C, showed that the longitudinal muscle fibers of the funnel retractor were activated rapidly (8 ms latent period following stimulation) and generated force rapidly (peak twitch force occurred within 50 ms). The longitudinal fibers had low V(max) (2.15 +/-0.26 L(0) s(-1), where L(0) was the length that generated peak isometric force) but generated relatively high isometric stress (270+/-20 mN mm(-2) physiological cross section). The fibers exhibited a moderate maximum power output (49.9 W kg(-1)), compared with vertebrate and arthropod cross striated fibers, at a V/V(max) of 0.33+/-0.044. During ventilation of the mantle cavity and locomotion, the funnel retractor muscle operated in vivo over a limited range of strains (+0.075 to -0.15 relative to resting length, L(R)) and at low strain rates (from 0.16 to 0.91 L(R) s(-1) ), corresponding to a range of V/V(max) from 0.073 to 0.42. During the exhalant phase of the jet the range of strains was even narrower: maximum range less than +/-0.04, with the muscle operating nearly isometrically during ventilation and slow, arms-first swimming. The limited length operating range of the funnel retractor muscles, especially during ventilation and slow jetting, suggests that they may act as muscular struts
PMCID:2892422
PMID: 20581273
ISSN: 1477-9145
CID: 134341

Myelin protein composition is altered in mice lacking either sulfated or both sulfated and non-sulfated galactolipids

Fewou, Simon Ngamli; Fernandes, Alda; Stockdale, Katie; Francone, Victor P; Dupree, Jeffrey L; Rosenbluth, Jack; Pfeiffer, Steven E; Bansal, Rashmi
Myelin is highly enriched in galactocerebroside (GalCer) and its sulfated form sulfatide. Mice, unable to synthesize GalCer and sulfatide (CGT(null)) or sulfatide alone (CST(null)), exhibit disorganized paranodal structures and progressive dysmyelination. To obtain insights into the molecular mechanisms underlying these defects, we examined myelin composition of these mutants by two-dimensional differential fluorescence intensity gel electrophoresis proteomic approach and immunoblotting. We identified several proteins whose expressions were significantly altered in these mutants. These proteins are known to regulate cytoskeletal dynamics, energy metabolism, vesicular trafficking or adhesion, suggesting a disruption in these physiological processes in the absence of myelin galactolipids. Further analysis of one of these proteins, nucleotide diphosphate kinase (NDK)/Nm23, showed that it was reduced in myelin of CGT(null) and increased in CST(null), but not in whole brain homogenate. Immunostaining showed an increase in its expression in the cell bodies of CGT(null)- and a decrease in CST(null)-oligodenrocytes, together leading to the hypothesis that transport of NDK/Nm23 from oligodenrocyte cell bodies into myelin may be differentially dysregulated in the absence of these galactolipids. This study provides new insights into the changes that occur in the composition/distribution of myelin proteins in mice lacking either unsulfated and/or sulfated galactolipids and reinforces the role of these lipids in intracellular trafficking
PMID: 19878436
ISSN: 1471-4159
CID: 134970

Multiple functions of the paranodal junction of myelinated nerve fibers

Rosenbluth, Jack
Myelin sheaths include an extraordinary structure, the 'paranodal axoglial junction' (PNJ), which attaches the sheath to the axon at each end of each myelin segment. Its size is enormous and its structure unique. Here we review past and current studies showing that this junction can serve multiple functions in maintaining reliable saltatory conduction. The present evidence points to three functions in particular. 1) It seals the myelin sheath to the axon to prevent major shunting of nodal action currents beneath the myelin sheath while still leaving a narrow channel interconnecting the internodal periaxonal space with the perinodal space. This pathway represents a potential route through which juxtaparanodal and internodal channels can influence nodal activity and through which nutrients, such as glucose, and other metabolites can diffuse to and from the internodal periaxonal space. 2) It serves as a mechanism for maintaining discrete, differentiated axolemmal domains at and around the node of Ranvier by acting as a barrier to the lateral movement of ion channel complexes within the axolemma, thus concentrating voltage-gated sodium channels at the node and segregating fast voltage-gated potassium channels to the juxtaparanode under the myelin sheath. 3) It attaches the myelin sheath to the axon on either side of the node and can thus maintain nodal dimensions in the face of mechanical stresses associated with stretch or other local factors that might cause disjunction. It is therefore the likely means for maintaining constancy of nodal surface area and electrical parameters essential for consistency in conduction. (c) 2009 Wiley-Liss, Inc
PMID: 19224642
ISSN: 1097-4547
CID: 94511

Spongiform pathology in mouse CNS lacking 'neuropathy target esterase' and cellular prion protein

Rosenbluth, Jack; Schiff, Rolf; Lam, Pokman; Nuriel, Tal; Chao, Moses V
Conditional inactivation of the 'neuropathy target esterase' (NTE) gene in mouse nerve cells was previously shown to result in CNS pathology comparable to the spongiform encephalopathy characteristic of prion diseases. To determine whether cellular prion protein (PrPc) is essential for development of this pathology we examined hippocampi of mice lacking NTE alone, PrPc alone or both NTE and PrPc. Light microscopic survey showed clear-cut spongiform changes in a majority of NTE-/- and NTE/PrP-/- double knockout mice but in only one PrP-/- mouse. EM analysis of spongiform lesions from NTE-/- and NTE/PrP-/- mice, and from the one affected PrP-/- mouse, revealed patches of branching tubular inclusions, comparable to the 'tubulovesicular inclusions' described previously in prion diseases. We conclude that spongiform pathology in conditional NTE knockout mice is not mediated by PrPc, and that tubulovesicular inclusions can be seen in spongiform encephalopathy of other etiologies and are not pathognomonic of prion disease
PMCID:2749466
PMID: 19524041
ISSN: 1095-953x
CID: 101443

Spinal cord dysmyelination caused by an antiproteolipid protein IgM antibody: implications for the mechanism of central nervous system myelin formation

Rosenbluth, J; Schiff, R
Antiglycolipid IgM antibodies are known to induce formation of 'wide spaced' or 'expanded' myelin, a distinctive form of dysmyelination characterized by a repeat period approximately two or three times normal, which is seen also in diseases, including multiple sclerosis. To determine whether an antibody directed against a myelin protein would cause equivalent pathology, we implanted O10 hybridoma cells into the spinal cord of adult or juvenile rats. O10 produces an IgM directed against PLP, the major protein of CNS myelin. Subsequent examination of the cords showed focal demyelination and remyelination. In addition, however, some juvenile cords, but none of the adult cords, displayed wide-spaced myelin with lamellae separated by an extracellular material comprising elements consistent with IgM molecules in appearance. Wide spacing tended to involve the outer layers of the sheath and in some cases alternated with normally spaced lamellae. A feature not seen previously consists of multiple expanded myelin lamellae in one sector of a sheath continuous with normally spaced lamellae in another, resulting in variation in sheath thickness around the axonal circumference. This uneven distribution of wide-spaced lamellae is most simply explained based on incorporation of IgM molecules into immature sheaths during myelin formation and implies a model of CNS myelinogenesis more complex than simple spiraling. The periaxonal space never displays widening of this kind, but the interface with adjacent myelin sheaths or oligodendrocytes may. Thus, wide spacing appears to require that IgM molecules bridge between two PLP-containing membranes and does not reflect the mere presence of immunoglobulin within the extracellular space
PMCID:2644742
PMID: 18951490
ISSN: 1097-4547
CID: 97780

Effects of osmolality on PLP-null myelin structure: implications re axon damage

Rosenbluth, Jack; Schiff, Rolf; Lam, Pokman
In order to test the adhesiveness of PLP-null compact myelin lamellae we soaked aldehyde-fixed CNS specimens from PLP-null and control mice overnight in distilled water, in Ringer's solution or in Ringer's solution with added 1 M sucrose. Subsequent examination of the tissue by EM showed that both PLP-null and control white matter soaked in Ringer remained largely compact. After the distilled water soak, control myelin was virtually unchanged, but PLP-null myelin showed some decompaction, i.e., separation of myelin lamellae from one another. After the sucrose/Ringer soak, normal myelin developed foci of decompaction, but the great majority of lamellae remained compact. In the PLP-null specimens, in contrast, many of the myelin sheaths became almost completely decompacted. Such sheaths became thicker overall and were comprised of lamellae widely separated from one another by irregular spaces. Thus, in normal animals, fixed CNS myelin lamellae are firmly adherent and resist separation; PLP-null myelin lamellae, in contrast, are poorly adherent and more readily separated. Mechanisms by which impaired adhesiveness of PLP-null myelin lamellae and fluctuations in osmolality in vivo might underlie slowing of conduction and axon damage are discussed
PMCID:2705240
PMID: 19094971
ISSN: 1872-6240
CID: 94512

The potential of marrow stromal cells to differentiate into CNS myelin [Meeting Abstract]

Campbell, Kirk A; Schiff, Rolf; Rosenbluth, Jack
ORIGINAL:0006260
ISSN: 1939-0815
CID: 75327

Mice with conditional inactivation of fibroblast growth factor receptor-2 signaling in oligodendrocytes have normal myelin but display dramatic hyperactivity when combined with Cnp1 inactivation

Kaga, Y; Shoemaker, W J; Furusho, M; Bryant, M; Rosenbluth, J; Pfeiffer, S E; Oh, L; Rasband, M; Lappe-Siefke, C; Yu, K; Ornitz, D M; Nave, K-A; Bansal, R
Fibroblast growth factor receptors (Fgfr) comprise a widely expressed family of developmental regulators implicated in oligodendrocyte (OL) maturation of the CNS. Fgfr2 is expressed by OLs in myelinated fiber tracks. In vitro, Fgfr2 is highly upregulated during OL terminal differentiation, and its activation leads to enhanced growth of OL processes and the formation of myelin-like membranes. To investigate the in vivo function of Fgfr2 signaling by myelinating glial cells, we inactivated the floxed Fgfr2 gene in mice that coexpress Cre recombinase (cre) as a knock-in gene into the OL-specific 2',3'-cyclic nucleotide phosphodiesterase (Cnp1) locus. Surprisingly, no obvious defects were detected in brain development of these conditional mutants, including the number of OLs, the onset and extent of myelination, the ultrastructure of myelin, and the expression level of myelin proteins. However, unexpectedly, a subset of these conditional Fgfr2 knock-out mice that are homozygous for cre and therefore are also Cnp1 null, displayed a dramatic hyperactive behavior starting at approximately 2 weeks of age. This hyperactivity was abolished by treatment with dopamine receptor antagonists or catecholamine biosynthesis inhibitors, suggesting that the symptoms involve a dysregulation of the dopaminergic system. Although the molecular mechanisms are presently unknown, this novel mouse model of hyperactivity demonstrates the potential involvement of OLs in neuropsychiatric disorders, as well as the nonpredictable role of genetic interactions in the behavioral phenotype of mice.
PMID: 17122059
ISSN: 1529-2401
CID: 3889522