Try a new search

Format these results:

Searched for:

person:ryooh01

Total Results:

63


The unfolded protein response in metazoan development

Mitra, Sahana; Ryoo, Hyung Don
Eukaryotic cells respond to an overload of unfolded proteins in the endoplasmic reticulum (ER) by activating signaling pathways that are referred to as the unfolded protein response (UPR). Much UPR research has been conducted in cultured cells that exhibit no baseline UPR activity until they are challenged by ER stress initiated by chemicals or mutant proteins. At the same time, many genes that mediate UPR signaling are essential for the development of organisms ranging from Drosophila and fish to mice and humans, indicating that there is physiological ER stress that requires UPR in normally developing animal tissues. Recent studies have elucidated the tissue-specific roles of all three branches of UPR in distinct developing tissues of Drosophila, fish and mammals. As discussed in this Review, these studies not only reveal the physiological functions of the UPR pathways but also highlight a surprising degree of specificity associated with each UPR branch in development.
PMID: 30770479
ISSN: 1477-9137
CID: 3656512

highroad Is a Carboxypetidase Induced by Retinoids to Clear Mutant Rhodopsin-1 in Drosophila Retinitis Pigmentosa Models

Huang, Huai-Wei; Brown, Brian; Chung, Jaehoon; Domingos, Pedro M; Ryoo, Hyung Don
Rhodopsins require retinoid chromophores for their function. In vertebrates, retinoids also serve as signaling molecules, but whether these molecules similarly regulate gene expression in Drosophila remains unclear. Here, we report the identification of a retinoid-inducible gene in Drosophila, highroad, which is required for photoreceptors to clear folding-defective mutant Rhodopsin-1 proteins. Specifically, knockdown or genetic deletion of highroad blocks the degradation of folding-defective Rhodopsin-1 mutant, ninaEG69D. Moreover, loss of highroad accelerates the age-related retinal degeneration phenotype of ninaEG69D mutants. Elevated highroad transcript levels are detected in ninaEG69D flies, and interestingly, deprivation of retinoids in the fly diet blocks this effect. Consistently, mutations in the retinoid transporter, santa maria, impairs the induction of highroad in ninaEG69D flies. In cultured S2 cells, highroad expression is induced by retinoic acid treatment. These results indicate that cellular quality-control mechanisms against misfolded Rhodopsin-1 involve regulation of gene expression by retinoids.
PMCID:5832065
PMID: 29425495
ISSN: 2211-1247
CID: 2948362

The GCN2-ATF4 Signaling Pathway Induces 4E-BP to Bias Translation and Boost Antimicrobial Peptide Synthesis in Response to Bacterial Infection

Vasudevan, Deepika; Clark, Nicholas K; Sam, Jessica; Cotham, Victoria C; Ueberheide, Beatrix; Marr, Michael T 2nd; Ryoo, Hyung Don
Bacterial infection often leads to suppression of mRNA translation, but hosts are nonetheless able to express immune response genes through as yet unknown mechanisms. Here, we use a Drosophila model to demonstrate that antimicrobial peptide (AMP) production during infection is paradoxically stimulated by the inhibitor of cap-dependent translation, 4E-BP (eIF4E-binding protein; encoded by the Thor gene). We found that 4E-BP is induced upon infection with pathogenic bacteria by the stress-response transcription factor ATF4 and its upstream kinase, GCN2. Loss of gcn2, atf4, or 4e-bp compromised immunity. While AMP transcription is unaffected in 4e-bp mutants, AMP protein levels are substantially reduced. The 5' UTRs of AMPs score positive in cap-independent translation assays, and this cap-independent activity is enhanced by 4E-BP. These results are corroborated in vivo using transgenic 5' UTR reporters. These observations indicate that ATF4-induced 4e-bp contributes to innate immunity by biasing mRNA translation toward cap-independent mechanisms, thus enhancing AMP synthesis.
PMCID:5728446
PMID: 29166596
ISSN: 2211-1247
CID: 2792262

Two distinct nodes of translational inhibition in the Integrated Stress Response

Ryoo, Hyung Don; Vasudevan, Deepika
The Integrated Stress Response (ISR) refers to a signaling pathway initiated by stress-activated eIF2alpha kinases. Once activated, the pathway causes attenuation of global mRNA translation while also paradoxically inducing stress response gene expression. A detailed analysis of this pathway has helped us better understand how stressed cells coordinate gene expression at translational and transcriptional levels. The translational attenuation associated with this pathway has been largely attributed to the phosphorylation of the translational initiation factor eIF2alpha. However, independent studies are now pointing to a second translational regulation step involving a downstream ISR target, 4E-BP, in the inhibition of eIF4E and specifically cap-dependent translation. The activation of 4E-BP is consistent with previous reports implicating the roles of 4E-BP resistant, Internal Ribosome Entry Site (IRES) dependent translation in ISR active cells. In this review, we provide an overview of the translation inhibition mechanisms engaged by the ISR and how they impact the translation of stress response genes.
PMCID:5720466
PMID: 28803610
ISSN: 1976-670x
CID: 2670882

The requirement of IRE1-XBP1 in resolving physiological stress during Drosophila development

Huang, Huai-Wei; Zeng, Xiaomei; Rhim, Taiyoun; Ron, David; Ryoo, Hyung Don
IRE1 mediates the Unfolded Protein Response (UPR) in part by regulating XBP1 mRNA splicing in response to endoplasmic reticulum (ER) stress. In cultured metazoan cells, IRE1 also exhibits XBP1-independent biochemical activities. IRE1 and XBP1 are developmentally essential genes in Drosophila and mammals, but the source of the physiological ER stress and the relative contributions of XBP1 activation versus other IRE1 functions to development remain unknown. Here, employed Drosophila to address this question. Specifically, we find that specific regions of the developing alimentary canal, fat body and the male reproductive organ are the sources of physiological stress that requires ire1 and xbp1 for resolution. In particular, the developmental lethality associated with xbp1 nulls was rescued by transgenic expression of xbp1 in the alimentary canal. IRE1's domains involved in detecting unfolded proteins, cleaving RNAs and activating XBP1 splicing were all essential for development. The earlier onset of developmental defects of ire1 mutant larvae compared to xbp1-null flies supports a developmental role for XBP1-independent IRE1 RNase activity while challenging the importance of RNase-independent effector mechanisms of Drosophila IRE1 function.
PMCID:5612175
PMID: 28775151
ISSN: 1477-9137
CID: 2655952

4E-BP is a target of the GCN2-ATF4 pathway during Drosophila development and aging

Kang, Min-Ji; Vasudevan, Deepika; Kang, Kwonyoon; Kim, Kyunggon; Park, Jung-Eun; Zhang, Nan; Zeng, Xiaomei; Neubert, Thomas A; Marr, Michael T 2nd; Don Ryoo, Hyung
Reduced amino acid availability attenuates mRNA translation in cells and helps to extend lifespan in model organisms. The amino acid deprivation-activated kinase GCN2 mediates this response in part by phosphorylating eIF2alpha. In addition, the cap-dependent translational inhibitor 4E-BP is transcriptionally induced to extend lifespan in Drosophila melanogaster, but through an unclear mechanism. Here, we show that GCN2 and its downstream transcription factor, ATF4, mediate 4E-BP induction, and GCN2 is required for lifespan extension in response to dietary restriction of amino acids. The 4E-BP intron contains ATF4-binding sites that not only respond to stress but also show inherent ATF4 activity during normal development. Analysis of the newly synthesized proteome through metabolic labeling combined with click chemistry shows that certain stress-responsive proteins are resistant to inhibition by 4E-BP, and gcn2 mutant flies have reduced levels of stress-responsive protein synthesis. These results indicate that GCN2 and ATF4 are important regulators of 4E-BP transcription during normal development and aging.
PMCID:5223598
PMID: 27979906
ISSN: 1540-8140
CID: 2363062

Adaptive Preconditioning in Neurological Diseases - Therapeutic Insights from Proteostatic Perturbations

Mollereau, B; Rzechorzek, N M; Roussel, B D; Sedru, M; Van den Brink, D; Bailly-Maitre, B; Palladino, F; Medinas, D B; Domingos, P M; Hunot, S; Chandran, S; Birman, S; Baron, T; Vivien, D; Duarte, C B; Ryoo, H D; Steller, H; Urano, F; Chevet, E; Kroemer, G; Ciechanover, A; Calabrese, E J; Kaufman, R J; Hetz, C
In neurological disorders, both acute and chronic neural stress can disrupt cellular proteostasis, resulting in the generation of pathological protein. However in most cases, neurons adapt to these proteostatic perturbations by activating a range of cellular protective and repair responses, thus maintaining cell function. These interconnected adaptive mechanisms comprise a 'proteostasis network' and include the unfolded protein response, the ubiquitin proteasome system and autophagy. Interestingly, several recent studies have shown that these adaptive responses can be stimulated by preconditioning treatments, which confer resistance to a subsequent toxic challenge - the phenomenon known as hormesis. In this review we discuss the impact of adaptive stress responses stimulated in diverse human neuropathologies including Parkinson s disease, Wolfram syndrome, brain ischemia, and brain cancer. Further, we examine how these responses - and the molecular pathways they recruit - might be exploited for therapeutic gain.
PMCID:5010532
PMID: 26923166
ISSN: 1872-6240
CID: 2009212

Long and short (timeframe) of endoplasmic reticulum stress-induced cell death

Ryoo, Hyung Don
A number of age-dependent degenerative diseases are caused by chronic endoplasmic reticulum (ER) stress in vital cells. In many cases, the afflicted cells suffer from ER stress since birth, but the death of irreplaceable cells occurs only late in life. Although our understanding of ER stress-induced cell death has advanced significantly, most of the known mechanisms involve pathways that signal within hours, and it remains unclear how these pathways regulate cell death that occurs only decades later. Here, I highlight the conceptual issues and suggest ways to make sense of the age-related effect of ER stress-induced cell death in degenerative diseases
PMCID:5656986
PMID: 27191701
ISSN: 1742-4658
CID: 2112192

Detection of Cell Death in Drosophila Tissues

Vasudevan, Deepika; Ryoo, Hyung Don
Drosophila has served as a particularly attractive model to study cell death due to the vast array of tools for genetic manipulation under defined spatial and temporal conditions in vivo as well as in cultured cells. These genetic methods have been well supplemented by enzymatic assays and a panel of antibodies recognizing cell death markers. This chapter discusses reporters, mutants, and assays used by various laboratories to study cell death in the context of development and in response to external insults.
PMCID:4867113
PMID: 27108437
ISSN: 1940-6029
CID: 2091912

Drosophila as a model for unfolded protein response research

Ryoo, Hyung Don
Endoplasmic Reticulum (ER) is an organelle where most secretory and membrane proteins are synthesized, folded, and undergo further maturation. As numerous conditions can perturb such ER function, eukaryotic cells are equipped with responsive signaling pathways, widely referred to as the Unfolded Protein Response (UPR). Chronic conditions of ER stress that cannot be fully resolved by UPR, or conditions that impair UPR signaling itself, are associated with many metabolic and degenerative diseases. In recent years, Drosophila has been actively employed to study such connections between UPR and disease. Notably, the UPR pathways are largely conserved between Drosophila and humans, and the mediating genes are essential for development in both organisms, indicating their requirement to resolve inherent stress. By now, many Drosophila mutations are known to impose stress in the ER, and a number of these appear similar to those that underlie human diseases. In addition, studies have employed the strategy of overexpressing human mutations in Drosophila tissues to perform genetic modifier screens. The fact that the basic UPR pathways are conserved, together with the availability of many human disease models in this organism, makes Drosophila a powerful tool for studying human disease mechanisms.
PMCID:4576952
PMID: 25999177
ISSN: 1976-670x
CID: 1591162