Try a new search

Format these results:

Searched for:

person:sabatd01

in-biosketch:yes

Total Results:

258


Christian de Duve: Explorer of the cell who discovered new organelles by using a centrifuge

Sabatini, David D; Adesnik, Milton
PMCID:3746853
PMID: 23924611
ISSN: 0027-8424
CID: 494952

Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival

Efeyan, Alejo; Zoncu, Roberto; Chang, Steven; Gumper, Iwona; Snitkin, Harriet; Wolfson, Rachel L; Kirak, Oktay; Sabatini, David D; Sabatini, David M
The mechanistic target of rapamycin complex 1 (mTORC1) pathway regulates organismal growth in response to many environmental cues, including nutrients and growth factors. Cell-based studies showed that mTORC1 senses amino acids through the RagA-D family of GTPases (also known as RRAGA, B, C and D), but their importance in mammalian physiology is unknown. Here we generate knock-in mice that express a constitutively active form of RagA (RagA(GTP)) from its endogenous promoter. RagA(GTP/GTP) mice develop normally, but fail to survive postnatal day 1. When delivered by Caesarean section, fasted RagA(GTP/GTP) neonates die almost twice as rapidly as wild-type littermates. Within an hour of birth, wild-type neonates strongly inhibit mTORC1, which coincides with profound hypoglycaemia and a decrease in plasma amino-acid concentrations. In contrast, mTORC1 inhibition does not occur in RagA(GTP/GTP) neonates, despite identical reductions in blood nutrient amounts. With prolonged fasting, wild-type neonates recover their plasma glucose concentrations, but RagA(GTP/GTP) mice remain hypoglycaemic until death, despite using glycogen at a faster rate. The glucose homeostasis defect correlates with the inability of fasted RagA(GTP/GTP) neonates to trigger autophagy and produce amino acids for de novo glucose production. Because profound hypoglycaemia does not inhibit mTORC1 in RagA(GTP/GTP) neonates, we considered the possibility that the Rag pathway signals glucose as well as amino-acid sufficiency to mTORC1. Indeed, mTORC1 is resistant to glucose deprivation in RagA(GTP/GTP) fibroblasts, and glucose, like amino acids, controls its recruitment to the lysosomal surface, the site of mTORC1 activation. Thus, the Rag GTPases signal glucose and amino-acid concentrations to mTORC1, and have an unexpectedly key role in neonates in autophagy induction and thus nutrient homeostasis and viability.
PMCID:4000705
PMID: 23263183
ISSN: 0028-0836
CID: 221302

Presenilin deficiency or lysosomal inhibition enhances Wnt signaling through relocalization of GSK3 to the late-endosomal compartment

Dobrowolski, Radek; Vick, Philipp; Ploper, Diego; Gumper, Iwona; Snitkin, Harriet; Sabatini, David D; De Robertis, Edward M
Sustained canonical Wnt signaling requires the inhibition of glycogen synthase kinase 3 (GSK3) activity by sequestration of GSK3 inside multivesicular endosomes (MVEs). Here, we show that Wnt signaling is increased by the lysosomal inhibitor chloroquine, which causes accumulation of MVEs. A similar MVE expansion and increased Wnt responsiveness was found in cells deficient in presenilin, a protein associated with Alzheimer's disease. The Wnt-enhancing effects were entirely dependent on the functional endosomal sorting complex required for transport (ESCRT), which is needed for the formation of intraluminal vesicles in MVEs. We suggest that accumulation of late endosomal structures leads to enhanced canonical Wnt signaling through increased Wnt-receptor/GSK3 sequestration. The decrease in GSK3 cytosolic activity stabilized cytoplasmic GSK3 substrates such as beta-catenin, the microtubule-associated protein Tau, and other proteins. These results underscore the importance of the endosomal pathway in canonical Wnt signaling and reveal a mechanism for regulation of Wnt signaling by presenilin deficiency.
PMCID:3538832
PMID: 23122960
ISSN: 2211-1247
CID: 793002

Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes

Taelman, Vincent F; Dobrowolski, Radoslaw; Plouhinec, Jean-Louis; Fuentealba, Luis C; Vorwald, Peggy P; Gumper, Iwona; Sabatini, David D; De Robertis, Edward M
Canonical Wnt signaling requires inhibition of Glycogen Synthase Kinase 3 (GSK3) activity, but the molecular mechanism by which this is achieved remains unclear. Here, we report that Wnt signaling triggers the sequestration of GSK3 from the cytosol into multivesicular bodies (MVBs), so that this enzyme becomes separated from its many cytosolic substrates. Endocytosed Wnt colocalized with GSK3 in acidic vesicles positive for endosomal markers. After Wnt addition, endogenous GSK3 activity decreased in the cytosol, and GSK3 became protected from protease treatment inside membrane-bounded organelles. Cryoimmunoelectron microscopy showed that these corresponded to MVBs. Two proteins essential for MVB formation, HRS/Vps27 and Vps4, were required for Wnt signaling. The sequestration of GSK3 extended the half-life of many other proteins in addition to beta-Catenin, including an artificial Wnt-regulated reporter protein containing GSK3 phosphorylation sites. We conclude that multivesicular endosomes are essential components of the Wnt signal-transduction pathway
PMCID:3022472
PMID: 21183076
ISSN: 1097-4172
CID: 133841

Philip Siekevitz: Bridging biochemistry and cell biology

Sabatini, David D
Philip Siekevitz, an Emeritus Professor at the Rockefeller University who made pioneering contributions to the development of modern cell biology, passed away on December 5th, 2009. He was a creative and enthusiastic scientist, as well as a great experimentalist who throughout his lifetime transmitted the joy of practicing science and the happiness that comes with the acquisition of new knowledge. He was a man of great integrity, with a thoroughly engaging personality and a humility not often found in people of his talent
PMCID:2854378
PMID: 20351067
ISSN: 1540-8140
CID: 115356

Involvement of vps33a in the fusion of uroplakin-degrading multivesicular bodies with lysosomes

Guo, Xuemei; Tu, Liyu; Gumper, Iwona; Plesken, Heide; Novak, Edward K; Chintala, Sreenivasulu; Swank, Richard T; Pastores, Gregory; Torres, Paola; Izumi, Tetsuro; Sun, Tung-Tien; Sabatini, David D; Kreibich, Gert
The apical surface of the terminally differentiated mouse bladder urothelium is largely covered by urothelial plaques, consisting of hexagonally packed 16-nm uroplakin particles. These plaques are delivered to the cell surface by fusiform vesicles (FVs) that are the most abundant cytoplasmic organelles. We have analyzed the functional involvement of several proteins in the apical delivery and endocytic degradation of uroplakin proteins. Although FVs have an acidified lumen and Rab27b, which localizes to these organelles, is known to be involved in the targeting of lysosome-related organelles (LROs), FVs are CD63 negative and are therefore not typical LROs. Vps33a is a Sec1-related protein that plays a role in vesicular transport to the lysosomal compartment. A point mutation in mouse Vps33a (Buff mouse) causes albinism and bleeding (Hermansky-Pudlak syndrome) because of abnormalities in the trafficking of melanosomes and platelets. These Buff mice showed a novel phenotype observed in urothelial umbrella cells, where the uroplakin-delivering FVs were almost completely replaced by Rab27b-negative multivesicular bodies (MVBs) involved in uroplakin degradation. MVB accumulation leads to an increase in the amounts of uroplakins, Lysosomal-associated membrane protein (LAMP)-1/2, and the activities of beta-hexosaminidase and beta-glucocerebrosidase. These results suggest that FVs can be regarded as specialized secretory granules that deliver crystalline arrays of uroplakins to the cell surface, and that the Vps33a mutation interferes with the fusion of MVBs with mature lysosomes thus blocking uroplakin degradation
PMCID:4494113
PMID: 19566896
ISSN: 1600-0854
CID: 101636

Obituary: George Palade 1912-2008 [Obituary]

Sabatini, David D
PMID: 19043427
ISSN: 1476-4679
CID: 111648

Plakoglobin is required for effective intermediate filament anchorage to desmosomes

Acehan, Devrim; Petzold, Christopher; Gumper, Iwona; Sabatini, David D; Muller, Eliane J; Cowin, Pamela; Stokes, David L
Desmosomes are adhesive junctions that provide mechanical coupling between cells. Plakoglobin (PG) is a major component of the intracellular plaque that serves to connect transmembrane elements to the cytoskeleton. We have used electron tomography and immunolabeling to investigate the consequences of PG knockout on the molecular architecture of the intracellular plaque in cultured keratinocytes. Although knockout keratinocytes form substantial numbers of desmosome-like junctions and have a relatively normal intercellular distribution of desmosomal cadherins, their cytoplasmic plaques are sparse and anchoring of intermediate filaments is defective. In the knockout, beta-catenin appears to substitute for PG in the clustering of cadherins, but is unable to recruit normal levels of plakophilin-1 and desmoplakin to the plaque. By comparing tomograms of wild type and knockout desmosomes, we have assigned particular densities to desmoplakin and described their interaction with intermediate filaments. Desmoplakin molecules are more extended in wild type than knockout desmosomes, as if intermediate filament connections produced tension within the plaque. On the basis of our observations, we propose a particular assembly sequence, beginning with cadherin clustering within the plasma membrane, followed by recruitment of plakophilin and desmoplakin to the plaque, and ending with anchoring of intermediate filaments, which represents the key to adhesive strength
PMID: 18496566
ISSN: 1523-1747
CID: 93304

In awe of subcellular complexity: 50 years of trespassing boundaries within the cell

Sabatini, David D
In this review I describe the several stages of my research career, all of which were driven by a desire to understand the basic mechanisms responsible for the complex and beautiful organization of the eukaryotic cell. I was originally trained as an electron microscopist in Argentina, and my first major contribution was the introduction of glutaraldehyde as a fixative that preserved the fine structure of cells, which opened the way for cytochemical studies at the EM level. My subsequent work on membrane-bound ribosomes illuminated the process of cotranslational translocation of polypeptides across the ER membrane and led to the formulation, with Gunter Blobel, of the signal hypothesis. My later studies with many talented colleagues contributed to an understanding of ER structure and function and aspects of the mechanisms that generate and maintain the polarity of epithelial cells. For this work my laboratory introduced the now widely adopted Madin-Darby canine kidney (MDCK) cell line, and demonstrated the polarized budding of envelope viruses from those cells, providing a powerful new system that further advanced the field of protein traffic
PMID: 16212485
ISSN: 1081-0706
CID: 61367

Rab27b is associated with fusiform vesicles and may be involved in targeting uroplakins to urothelial apical membranes

Chen, Yanru; Guo, Xuemei; Deng, Fang-Ming; Liang, Feng-Xia; Sun, Wenyu; Ren, Mindong; Izumi, Tetsuro; Sabatini, David D; Sun, Tung-Tien; Kreibich, Gert
The terminally differentiated umbrella cells of bladder epithelium contain unique cytoplasmic organelles, the fusiform vesicles, which deliver preassembled crystalline arrays of uroplakin proteins to the apical cell surface of urothelial umbrella cells. We have investigated the possible role of Rab proteins in this delivery process, and found Rab27b to be expressed at an extraordinary high level (0.1% of total protein) in urothelium, whereas Rab27b levels were greatly reduced (to <5% of normal urothelium) in cultured urothelial cells, which synthesized only small amounts of uroplakins and failed to form fusiform vesicles. Immuno-electron microscopy showed that Rab27b was associated with the cytoplasmic face of the fusiform vesicles, but not with that of the apical plasma membrane. The association of Rab27b with fusiform vesicles and its differentiation-dependent expression suggest that this Rab protein plays a role in regulating the delivery of fusiform vesicles to the apical plasma membrane of umbrella cells
PMCID:283537
PMID: 14625374
ISSN: 0027-8424
CID: 42018