Try a new search

Format these results:

Searched for:

person:solomj01

in-biosketch:yes

Total Results:

55


The extent and persistence of binding to respiratory mucosal DNA by inhaled tritiated propylene oxide

Snyder CA; Solomon JJ
In order to investigate some of the mechanisms underlying the carcinogenicity of inhaled propylene oxide (PO), the deposition and persistence of inhaled tritiated PO in the DNA of the nasal cavities, tracheae and lungs of rats were investigated. The results of dose/response exposure protocols revealed clear gradients for binding throughout the respiratory mucosa; the highest levels of binding were in the nasal mucosa and the lowest were in the lungs. Gradients became steeper as exposure concentrations were lowered. The persistence studies revealed that bound tritium declined in nasal mucosal DNA with apparent bi-exponential kinetics while clearance from the tracheal and pulmonary DNA was much slower and occurred with apparent mono-exponential kinetics. Consequently, although the initial levels of binding of inhaled PO are lower in the trachea and lungs than in the nasal cavity, the slow clearance of PO from the DNA in these organs could increase the chances of a mutational event
PMID: 8402585
ISSN: 0304-3835
CID: 6523

In vitro reaction of ethylene oxide with DNA and characterization of DNA adducts

Li F; Segal A; Solomon JJ
Ethylene oxide (EO) is a direct-acting SN2 alkylating agent and a rodent and probable human carcinogen. In vitro reactions of EO with calf thymus DNA in aqueous solution at neutral pH and 37 degrees C for 10 h resulted in the following 2-hydroxyethyl (HE) adducts (nmol/mg DNA): 7-HE-Gua (330), 3-HE-Ade (39), 1-HE-Ade (28), N6-HE-dAdo (6.2), 3-HE-Cyt (3.1), 3-HE-Ura (0.8) and 3-HE-dThd (2.0). Reference (marker) compounds were synthesized from reactions of EO with 2'-deoxyribonucleosides and DNA bases, isolated by paper and high performance liquid chromatography and characterized on the basis of chemical properties and UV, NMR and mass spectra. In agreement with our earlier studies with propylene oxide (PO) (Chem.-Biol. Interact., 67 (1988) 275-294) and glycidol (Cancer Biochem. Biophys., 11 (1990) 59-67), alkylation at N-3 of dCyd by EO under physiological conditions resulted in the rapid hydrolytic deamination of 3-HE-dCyd to 3-HE-dUrd. The hydroxyl group on the alkyl side chain which forms after epoxide alkylation is mechanistically involved in this rapid hydrolytic deamination. These results may provide important insights into the mechanisms of mutagenicity and carcinogenicity exhibited by EO and other SN2 aliphatic epoxides
PMID: 1643667
ISSN: 0009-2797
CID: 13559

In vitro mispairing specificity of O2-ethylthymidine

Grevatt PC; Solomon JJ; Bhanot OS
The O2-position of thymine is a major site of base alkylation by N-nitroso-alkylating agents, and its biological relevance remains obscure. The potential significance of this DNA damage was ascertained by studying in vitro DNA replication properties of O2-ethylthymidine (O2-Et-dT) site-specifically incorporated into a 36-nucleotide template. DNA replication was initiated eight nucleotides away from the O2-Et-dT lesion by Escherichia coli polymerase I (Klenow fragment) using a 17-nucleotide primer. In the presence of 10 microM dNTP and Mg2+, O2-Et-dT blocked DNA replication predominantly (94%) 3' to O2-Et-dT, with the remainder (5%) blocked after incorporation of a nucleotide opposite O2-Et-dT (incorporation-dependent blocked product). Postlesion synthesis was negligible (less than 1%). Nucleotide incorporation opposite O2-Et-dT increased to 23% at 200 microM dNTP. Postlesion synthesis remained negligible (less than 2%). DNA sequencing revealed dA present opposite O2-Et-dT in the incorporation-dependent blocked product. Negligible postlesion synthesis suggests that incorporation of dA opposite O2-Et-dT inhibits in vitro DNA synthesis. The O2-Et-dT.dA base pair may also impede DNA synthesis in vivo, contributing to the cytotoxicity of the ethylating agents. Substitution of Mn2+ for Mg2+ enhanced nucleotide incorporation opposite O2-Et-dT and produced postlesion synthesis (16%) at 10 microM dNTP, which increased to 39% at 200 microM dNTP. DNA sequence analysis showed that while dA was present opposite O2-Et-dT in the incorporation-dependent blocked product, both dA and dT were present opposite this lesion in the postlesion synthesis product.(ABSTRACT TRUNCATED AT 250 WORDS)
PMID: 1567865
ISSN: 0006-2960
CID: 8387

In vitro DNA replication implicates O2-ethyldeoxythymidine in transversion mutagenesis by ethylating agents

Bhanot OS; Grevatt PC; Donahue JM; Gabrielides CN; Solomon JJ
A 36-nucleotide oligomer containing a single O2-ethyldeoxythymidine (O2-Et-dT) adduct at a specific site was synthesized. The oligomer, which corresponds to a specific DNA sequence in gene G of bacteriophage phi X174, was used as a template by T7 DNA polymerase to investigate the in vitro mutagenic specificity of O2-Et-dT. At 10 microM dNTP and 5 mM Mg++, the progress of T7 DNA polymerase was interrupted by O2-Et-dT: 80% 3' to O2-Et-dT and 14% after incorporating a nucleotide opposite O2-Et-dT (incorporation-dependent blocked product). DNA synthesis past the lesion was low (6%). Incorporation of a nucleotide opposite O2-Et-dT and subsequent postlesion synthesis were enhanced by increasing the dNTP concentration, with postlesion synthesis reaching 30% at 200 microM. Postlesion synthesis was further increased to 45% by addition of 10 mM dAMP to the polymerization reactions. DNA sequencing revealed that both dA and dT were incorporated opposite O2-Et-dT with dA incorporation impeding the progress of DNA synthesis. dT incorporation was efficiently extended implicating O2-Et-dT in transversion mutagenesis in vivo. These studies provide a basis for understanding the molecular mechanisms by which ethylating agents contribute to cytotoxicity, A.T transversion mutagenesis and activation of the oncogene neu by an A.T----T.A transversion event in rat neuroblastomas
PMCID:310427
PMID: 1741292
ISSN: 0305-1048
CID: 13693

Quantitative high-performance liquid chromatography analysis of DNA oxidized in vitro and in vivo

Frenkel K; Zhong ZJ; Wei HC; Karkoszka J; Patel U; Rashid K; Georgescu M; Solomon JJ
Oxidative modification of genetic material has been implicated as a factor in carcinogenesis, particularly during promotion and progression, and therefore there is a need for sensitive detection of oxidized DNA bases. We developed a method that can be applied to DNA isolated from any source and used to simultaneously quantify oxidized nucleosides without a need to prelabel the DNA or use destructive hydrolytic procedures. This method is based on: (a) enzymatic DNA digestion; (b) HPLC separation of the resultant nucleosides; (c) acetylation of the oxidized nucleosides with [3H]Ac2O (acetic anhydride); (d) removal of the radioactive debris; and (e) quantitative analysis of tritiated nucleoside acetates by HPLC. Enzymatic DNA digestion was optimized using DNase I in the presence of Mg2+ (pH 7), followed by nuclease P1 in the presence of Zn2+ (pH 5.1) and alkaline phosphatase (pH 7.5). Analysis of DNA oxidized with H2O2 in the presence of Fe2+/EDTA for 30 min showed that the levels of 8-OHdG (8-hydroxy-2'-deoxyguanosine) were increased 2.7-fold, HMdU (5-hydroxymethyl-2'-deoxyuridine) 3.15-fold, and FdU (5-formyl-2'-deoxyuridine) 2.5-fold. Although the (-)-isomer of cis-dTG (cis-thymidine glycol) was enhanced 2.3 times, the (+)-isomer remained virtually unchanged. Analysis of DNA isolated from epidermal cells of mice treated in vivo with the tumor promoter TPA (12-O-tetradecanoylphorbol 13-acetate) showed 4.8-, 2.7-, and 8.7-fold increases in the levels of total cis-dTG, 8-OHdG, and HMdU, respectively, and of some unknown DNA oxidation products. These results prove applicability of the 3H-postlabeling method to the analysis of DNA (and potentially RNA) isolated from many sources, including animals and humans
PMID: 1888026
ISSN: 0003-2697
CID: 13980

Incorporation of dA opposite N3-ethylthymidine terminates in vitro DNA synthesis

Bhanot OS; Grevatt PC; Donahue JM; Gabrielides CN; Solomon JJ
N3-Ethylthymidine (N3-Et-dT) was site specifically incorporated into a 17-nucleotide oligomer to investigate the significance of DNA ethylation at the central hydrogen-bonding site (N3) of thymine. The 5'-(dimethoxytrityl)-protected N3-Et-dT was converted to the corresponding 3'-phosphoramidite and used to incorporate N3-Et-dT at a single site in the oligonucleotide during synthesis by the phosphite triester method. The purified N3-Et-dT-containing oligomer was ligated to a second 17-mer to yield a 34-nucleotide template with N3-Et-dT present at position 26 from the 3'-end. The template DNA, which corresponds to a specific sequence at gene G of bacteriophage phi X174, was used to study the specificity of nucleotide incorporation opposite N3-Et-dT. At 10 microM dNTP and 5 mM Mg2+, N3-Et-dT blocked DNA synthesis by Escherichia coli polymerase I (Klenow fragment): 96% immediately 3' to N3-Et-dT and 4% after incorporation of a nucleotide opposite N3-Et-dT (incorporation-dependent blocked product). DNA replication past the lesion (postlesion synthesis) was negligible. Incorporation opposite N3-Et-dT increased with increased dNTP concentrations, reaching 35% at 200 microM. Postlesion synthesis remained negligible. DNA sequencing of the incorporation-dependent blocked product revealed that dA is incorporated opposite N3-Et-dT consistent with the 'A' rule in mutagenesis. Formation of the N3-Et-dT.dA base pair at the 3'-end of the growing chain terminated DNA synthesis. These results implicate N3-Et-dT as a potentially cytotoxic lesion produced by ethylating agents
PMID: 2148116
ISSN: 0006-2960
CID: 14276

In vitro reactions of isopropyl methanesulfonate with DNA and with 2'-deoxyribonucleosides

Li F; Solomon JJ; Mukai F; Segal A
Isopropyl methanesulfonate (IPMS), an SN1 alkylating agent, is a direct-acting mutagen in bacteria. We recently reported that s.c. and topical administration of IPMS to mice resulted in the rapid induction of thymic lymphomas. Thymic lymphoma induction was not observed following administration of the SN2 alkylating agents methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS). We have studied the reactions of IPMS with dAdo, dCyd, dGuo and dThd at pH 6.5 to 7.5 and 37 degrees C for 3 h. IPMS formed the following isopropyl (IP) adducts: 7-IP-Gua (4% yield), O6-IP-Gua (8%), O2-IP-Cyt (1%), O2-IP-dThd (2%), 3-IP-dThd (1%), and O4-IP-dThd (0.4%). Adducts were characterized from UV and mass spectra. IPMS was reacted in vitro with calf thymus DNA (pH 6.5 to 7.5, 37 degrees C, 3 h) and yielded (nmol/mg DNA): 7-IP-Gua (22) O6-IP-dGuo (11), O2-IP-Cyt (9), O2-IP-dThd (2), O4-IP-dThd (2), 3-IP-Ade (0.2) and 3-IP-dThd (0.2). The relatively greater alkylation of exocyclic oxygen atoms in DNA by IPMS compared to values for MMS and EMS reported by others, may play a role in the induction of thymic lymphomas in mice by IPMS and the lack of such activity by MMS and EMS
PMID: 1964398
ISSN: 0305-7232
CID: 14308

In vitro reactions of glycidol with pyrimidine bases in calf thymus DNA

Segal, A; Solomon, J J; Mukai, F
The 3-carbon epoxide glycidol (GLC) was reacted with dCyd and dThd at pH 7.0 to 7.5 and 37 degrees C for 10 h. The only product detected from the reaction with dCyd was 3-(2,3-dihydroxypropyl)-dUrd (3-DHP-dUrd) whose structure was established from UV spectra, isobutane chemical ionization (CI) mass spectra together with accurate mass measurements and synthesis of 3-DHP-dUrd from reactions of GLC with dUrd. Reaction of GLC with dThd gave a single product, 3-DHP-dThd, whose structure was established from UV spectra and CI mass spectra together with accurate mass measurements. The compounds, 3-DHP-dUrd and 3-DHP-dThd, were identified and quantitated following in vitro reaction of GLC with calf thymus DNA at pH 7.0 to 7.5 and 37 degrees C for 10 h. The amounts of 3-DHP-dUrd and 3-DHP-dThd formed were 10 and 1 nmol/mg DNA respectively. Alkylation at the N-3 position of Cyt resulted in a rapid hydrolytic deamination of Cyt to form a Ura adduct. This phenomena was previously reported by us following reaction of propylene oxide (PO) with dCyd and following in vitro reaction of PO with calf thymus DNA under identical conditions. The rapid hydrolytic deamination of Cyt to Ura may be a general occurrence following alkylation of N-3 of Cyt by 3-carbon epoxides and is postulated to be related to the presence of a C-2 hydroxyl group on the 3-carbon propyl side chain. The implications of this newly discovered lesion in DNA in terms of the mutagenicity of GLC (and PO) remain to be elucidated.
PMID: 2337881
ISSN: 0305-7232
CID: 620482

DNA adducts of propylene oxide and acrylonitrile epoxide: hydrolytic deamination of 3-alkyl-dCyd to 3-alkyl-dUrd

Solomon JJ; Segal A
Propylene oxide (PO) and acrylonitrile epoxide (ANO) are 3-carbon epoxides that are direct-acting mutagens. PO is a rodent carcinogen, and ANO has been postulated to be the ultimate carcinogenic form of acrylonitrile (AN). We have studied the reactions of these agents with 2'-deoxynucleosides and in vitro with calf thymus DNA at pH 7.0 to 7.5 and 37 degrees C. PO was reacted with DNA for 10 hr and resulted in the formation of the following 2-hydroxypropyl (HP) adducts: N6-HP-dAdo (1 nmole/mg DNA), 3-HP-Ade (14 nmole/mg DNA), 7-HP-Gua (133 nmole/mg DNA) and 3-HP-dUrd (13 nmole/mg DNA). 3-HP-dUrd was formed after initial alkylation at N-3 of dCyd followed by conversion of the adjacent exocyclic imino group at C-4 to an oxygen (hydrolytic deamination) with the formation of a dUrd adduct. ANO was reacted for 3 hr with calf thymus DNA and yielded N6-(2-hydroxy-2-carboxyethyl-dAdo (N6-HOCE-dAdo) (2 nmole/mg DNA); 1, N6-etheno-dAdo (11 nmole/mg DNA); 7-(2-oxoethyl)-Gua (7-OXE-Gua) (110 nmole/mg DNA); 3-OXE-dThd (1 nmole/mg DNA); and 3-HOCE-dUrd (80 nmole/mg DNA). As with 3-HP-dUrd, 3-HOCE-dUrd resulted from hydrolytic deamination of an initially formed dCyd adduct. A mechanism is proposed for the conversion of 3-alkyl-dCyd to 3-alkyl-dUrd involving intramolecular catalysis by the OH group on the 3-carbon side chain of the adduct.(ABSTRACT TRUNCATED AT 250 WORDS)
PMCID:1567513
PMID: 2759058
ISSN: 0091-6765
CID: 10626

Isolation of methylcarbamoyl-adducts of adenine and cytosine following in vitro reaction of methyl isocyanate with calf thymus DNA

Segal A; Solomon JJ; Li FJ
Methylisocyanate (MIC) is the direct-acting acylating compound involved in the Bhopal, India disaster which occurred on December 3rd, 1984. The accidental release of MIC resulted in at least 2000 deaths, thousands of injuries and exposure of at least 200,000 people to varying amounts of MIC. We have studied how MIC reacts with 2'-deoxyribonucleosides at pH 7.0 and 37 degrees C for 1 h. MIC acylates exocyclic amino groups resulting in the following methylcarbamoyl (MC) adducts: N6-MC-Ade (0.5% yield) and N4-MC-dCyd (6%). No adducts were detected with dThd and dGuo. UV, NMR and mass spectrometry were employed to spectroscopically characterize these adducts. MIC was reacted with calf thymus DNA (pH 7.0, 37 degrees C, 1 h) and yielded N6-MC-Ade (0.3 nmol/mg DNA) and N4-MC-dCyd (2.0 nmol/mg DNA). The inability of others to observe genetic mutations by MIC in Salmonella and Drosophila is consistent with the exocyclic adducts at N4 of Cyt and N6 of Ade where normal hydrogen bonding can occur after rotation of the methylcarbamoyl group anti to the Watson-Crick side of the molecule assuming that MIC binds to DNA within the intact cell
PMID: 2731306
ISSN: 0009-2797
CID: 10771