Try a new search

Format these results:

Searched for:

person:sterna01

in-biosketch:yes

Total Results:

165


What has passed is prologue: New cellular and physiological roles of G6PD

Yang, Hung-Chi; Wu, Yi-Hsuan; Liu, Hui-Ya; Stern, Arnold; Chiu, Daniel Tsun-Yee
G6PD deficiency has been the most pervasive inherited disorder in the world since having been discovered. G6PD has an antioxidant role by functioning as a major NADPH provider to reduce excessive oxidative stress. NADPH can produce reactive oxygen species and reactive nitrogen species mediated by NADPH oxidase (NOX) and nitric oxide synthase (NOS), respectively. Hence, G6PD also has a pro-oxidant role. Research in the past has focused on the enhanced susceptibility of G6PD-deficient cells or individuals to oxidative challenge. The cyto-regulatory role of G6PD has largely been overlooked. By using a metabolomic approach, it is noted that upon oxidant challenge, G6PD-deficient cells will reprogram the GSH metabolism from regeneration to synthesis with exhaustive energy consumption. Recently, new cellular/physiologic roles of G6PD have been discovered. By using a proteomic approach, it has been found that G6PD plays a regulatory role in xenobiotic metabolism possibly via NOX and the redox sensitive Nrf2 signaling pathway to modulate the expression of xenobiotic metabolizing enzymes. Since G6PD is a key regulator responsible for intracellular redox homeostasis, G6PD deficiency can alter redox balance leading to many abnormal cellular effects such as the cellular inflammatory and immune response against viral infection. G6PD may play an important role in embryogenesis as G6PD-knockdown mouse cannot produce offspring and G6PD-deficient C. elegans with defective egg production and hatching. This array of findings indicates that the cellular and physiologic roles of G6PD, other than the classical role as an antioxidant enzyme, deserve further attention.
PMID: 27684214
ISSN: 1029-2470
CID: 2262642

Nitric oxide: Protein tyrosine phosphorylation and protein S-nitrosylation in cancer

Monteiro, Hugo P; Costa, Paulo E; Reis, Adriana K C A; Stern, Arnold
Cancer is a worldwide health problem leading to a high incidence of morbidity and mortality. Malignant transformation can occur by expression of oncogenes, over-expression and deregulated activation of proto-oncogenes, and inactivation of tumor suppressor genes. These cellular actions occur through stimulation of oncogenic signaling pathways. Nitric oxide (NO) can induce genetic changes in cells and its intracellular generation can lead to tumor formation and progression. It can also promote anti-tumor activities. The pro- and anti-tumor activities of NO are dependent on its intracellular concentration, cell compartmentalization, and cell sensitivity. NO affects a number of oncogenic signaling pathways. This review focuses on two oncogenic signaling pathways: NO-EGFR-Src-FAK and NO-Ras-EGFR-ERK1/2 MAP kinases. In these pathways, low to intermediate concentrations of NO/S-nitrosothiols (RSNOs) stimulate oncogenic signaling, while high concentrations of NO/RSNO stimulate anti-oncogenic signaling. Increasing knowledge on pro- and anti-tumorigenic activities of NO and related reactive species such as RSNOs has fostered the research and synthesis of novel NO-based chemotherapeutic agents. RSNOs, effective as NO donors and trans-nitrosylating agents under appropriate conditions, may operate as potential chemotherapeutic agents.
PMID: 26068128
ISSN: 2320-2890
CID: 1803092

Ras, Rac1, and phosphatidylinositol-3-kinase (PI3K) signaling in nitric oxide induced endothelial cell migration

Eller-Borges, Roberta; Batista, Wagner L; da Costa, Paulo E; Tokikawa, Rita; Curcio, Marli F; Strumillo, Scheilla T; Sartori, Adriano; Moraes, Miriam S; de Oliveira, Graciele A; Taha, Murched O; Fonseca, Fabio V; Stern, Arnold; Monteiro, Hugo P
The small GTP-binding proteins Ras and Rac1 are molecular switches exchanging GDP for GTP and converting external signals in response to a variety of stimuli. Ras and Rac1 play an important role in cell proliferation, cell differentiation, and cell migration. Rac1 is directly involved in the reorganization and changes in the cytoskeleton during cell motility. Nitric oxide (NO) stimulates the Ras - ERK1/2 MAP kinases signaling pathway and is involved in the interaction between Ras and the phosphatidyl-inositol-3 Kinase (PI3K) signaling pathway and cell migration. This study utilizes bradykinin (BK), which promotes endogenous production of NO, in an investigation of the role of NO in the activation of Rac1 in rabbit aortic endothelial cells (RAEC). NO-derived from BK stimulation of RAEC and incubation of the cells with the s-nitrosothiol S-nitrosoglutathione (GSNO) activated Rac1. NO-derived from BK stimulation promoted RAEC migration over a period of 12 h. The use of RAEC permanently transfected with the dominant negative mutant of Ras (Ras(N17)) or with the non-nitrosatable mutant of Ras (Ras(C118S)); and the use of specific inhibitors of: Ras, PI3K, and Rac1 resulted in inhibition of NO-mediated Rac1 activation. BK-stimulated s-nitrosylation of Ras in RAEC mediates Rac1 activation and cell migration. Inhibition of NO-mediated Rac1 activation resulted in inhibition of endothelial cell migration. In conclusion, the NO indirect activation of Rac1 involves the direct participation of Ras and PI3K in the migration of endothelial cells stimulated with BK.
PMID: 25819133
ISSN: 1089-8611
CID: 1669502

The importance of nitric oxide/inducible nitric oxide synthase in the progression of human colon carcinoma [Meeting Abstract]

Monteiro, Hugo; Castro, Eloisa; Rinaldi, Tatiana; Mathias, Pedro Paulo; Stern, Arnold
ISI:000345812900044
ISSN: 1089-8611
CID: 1418692

Endothelium-derived nitric oxide (NO) activates the NO-epidermal growth factor receptor-mediated signaling pathway in bradykinin-stimulated angiogenesis

Moraes, Miriam S; Costa, Paulo E; Batista, Wagner L; Paschoalin, Taysa; Curcio, Marli F; Borges, Roberta E; Taha, Murched O; Fonseca, Fabio V; Stern, Arnold; Monteiro, Hugo P
Nitric oxide (NO) is involved in angiogenesis and stimulates the EGF-R signaling pathway. Stimulation of different endothelial cell lines with bradykinin (BK) activates the endothelial NO synthase (eNOS) and promotes EGF-R tyrosine phosphorylation. Increase in NO production correlated with enhanced phosphorylation of tyrosine residues and S-nitrosylation of the EGF-R. NO-mediated stimulatory effects on tyrosine phosphorylation of the EGF-R, where cGMP independent. Inhibition of soluble guanylyl cyclase followed by BK stimulation of human umbilical vein endothelial cells (HUVECs) did not change tyrosine phosphorylation levels of EGF-R. BK-stimulation of HUVEC promoted S-nitrosylation of the phosphatase SHP-1 and of p21Ras. Phosphorylation and activation of the ERK1/2 MAP kinases mediated by BK was dependent on the activation of the B2 receptor, of the EGF-R, and of p21 Ras. Inhibition of BK-stimulated S-nitrosylation prevented the activation of the ERK1/2 MAP kinases. Furthermore, activated ERK1/2 MAP kinases inhibited internalization of EGF-R by phosphorylating specific Thr residues of its cytoplasmic domain. BK-induced proliferation of endothelial cells was partially inhibited by the NOS inhibitor (L-NAME) and by the MEK inhibitor (PD98059). BK stimulated the expression of vascular endothelial growth factor (VEGF). VEGF expression was dependent on the activation of the EGF-R, the B2 receptor, p21Ras, and on NO generation. A Matrigel(R)-based in vitro assay for angiogenesis showed that BK induced the formation of capillary-like structures in HUVEC, but not in those cells expressing a mutant of the EGF-R lacking tyrosine kinase activity. Additionally, pre-treatment of BK-stimulated HUVEC with L-NAME, PD98059, and with SU5416, a specific inhibitor of VEGFR resulted in inhibition of in vitro angiogenesis. Our findings indicate that BK-mediated angiogenesis in endothelial cells involves the induction of the expression of VEGF associated with the activation of the NO/EGF-R/p21Ras/ERK1/2 MAP kinases signaling pathway.
PMID: 24960080
ISSN: 0003-9861
CID: 1131692

S-nitrosoglutathione and endothelial nitric oxide synthase-derived nitric oxide regulate compartmentalized ras s-nitrosylation and stimulate cell proliferation

Batista, Wagner L; Ogata, Fernando T; Curcio, Marli F; Miguel, Rodrigo B; Arai, Roberto J; Matsuo, Alisson L; Moraes, Miriam S; Stern, Arnold; Monteiro, Hugo P
Abstract Aims: S-nitrosylation of Cys118 is a redox-based mechanism for Ras activation mediated by nitric oxide (NO) at the plasma membrane. Results: Ras signaling pathway stimulation by 50 and/or 100 muM of S-nitrosoglutathione (GSNO) causes proliferation of HeLa cells. Proliferation was not observed in HeLa cells overexpressing non-nitrosatable H-Ras(C118S). HeLa cells overexpressing H-Ras(wt) containing the spatiotemporal probe green fluorescent protein (GFP) fused to the Ras-binding domain of Raf-1 (GFP-RBD) incubated with 100 muM GSNO stimulated a rapid and transient redistribution of GFP-RBD to the plasma membrane, followed by a delayed and sustained recruitment to the Golgi. No activation of H-Ras at the plasma membrane occurred in cells overexpressing H-Ras(C118S), contrasting with a robust and sustained activation of the GTPase at the Golgi. Inhibition of Src kinase prevented cell proliferation and activation of H-Ras by GSNO at the Golgi. Human umbilical vein endothelial cells (HUVECs) stimulated with bradykinin to generate NO were used to differentiate cell proliferation and Ras activation at the plasma membrane versus Golgi. In this model, Src kinase was not involved in cell proliferation, whereas Ras activation proceeded only at the plasma membrane, indicating that HUVEC proliferation induced by NO resulted only from stimulation of Ras. Innovation: The present work is the first to demonstrate that NO-mediated activation of Ras in different subcellular compartments regulates different downstream signaling pathways. Conclusion: S-nitrosylation of H-Ras at Cys(118) and the activation of Src kinase are spatiotemporally linked events of the S-nitrosothiol-mediated signaling pathway that occurs at the plasma membrane and at the Golgi. The nonparticipation of Src kinase and the localized production of NO by endothelial NO synthase at the plasma membrane limited NO-mediated Ras activation to the plasma membrane. Antioxid. Redox Signal. 18, 221-238.
PMID: 22894707
ISSN: 1523-0864
CID: 206382

Nitrosative/Oxidative Stress Conditions Regulate Thioredoxin-Interacting Protein (TXNIP) Expression and Thioredoxin-1 (TRX-1) Nuclear Localization

Ogata, Fernando Toshio; Batista, Wagner Luiz; Sartori, Adriano; Gesteira, Tarsis Ferreira; Masutani, Hiroshi; Arai, Roberto Jun; Yodoi, Junji; Stern, Arnold; Monteiro, Hugo Pequeno
Thioredoxin (TRX-1) is a multifunctional protein that controls the redox status of other proteins. TRX-1 can be found in the extracellular milieu, cytoplasm and nucleus, and it has distinct functions in each environment. Previously, we studied the intracellular localization of TRX-1 and its relationship with the activation of the p21Ras - ERK1/2 MAP Kinases signaling pathway. In situations where this pathway was activated by stress conditions evoked by a nitrosothiol, S-nitroso-N-acetylpenicillamine (SNAP), TRX-1 accumulated in the nuclear compartment due to nitrosylation of p21Ras and activation of downstream ERK1/2 MAP kinases. Presently, we demonstrate that ERK1/2 MAP Kinases activation and spatial distribution within cells trigger TRX-1 nuclear translocation through down-regulation of the physiological inhibitor of TRX-1, Thioredoxin Interacting Protein (TXNIP). Once activated by the oxidants, SNAP and H2O2, the ERK1/2 MAP kinases migrate to the nucleus. This is correlated with down-regulation of TXNIP. In the presence of the MEK inhibitors (PD98059 or UO126), or in cells transfected with the Protein Enriched in Astrocytes (PEA-15), a cytoplasmic anchor of ERK1/2 MAP kinases, TRX-1 nuclear migration and TXNIP down-regulation are no longer observed in cells exposed to oxidants. On the other hand, over-expression of TXNIP abolishes nuclear migration of TRX-1 under nitrosative/oxidative stress conditions, whereas gene silencing of TXNIP facilitates nuclear migration even in the absence of stress conditions. Studies based on the TXNIP promoter support this regulation. In conclusion, changes in TRX-1 compartmentalization under nitrosative/oxidative stress conditions are dependent on the expression levels of TXNIP, which are regulated by cellular compartmentalization and activation of the ERK1/2 MAP kinases.
PMCID:3869934
PMID: 24376827
ISSN: 1932-6203
CID: 741032

Endothelium-Derived Nitric Oxide (NO) Activates the NO-Epidermal Growth Factor Receptor-Mediated Signaling Pathway in Bradykinin-Mediated Angiogenesis [Meeting Abstract]

Moraes, Miriam S; da Costa, Paulo Eduardo; Taha, Murched Omar; Stern, Arnold; Monteiro, Hugo Pequeno
ISI:000310660600486
ISSN: 0891-5849
CID: 2734222

A role for nitric oxide and for nitric oxide synthases in tumor biology

De, Oliveira G A; Rosa, H; Reis, A K C A; Stern, A; Monteiro, H P
The dual role of nitric oxide in cancer biology is discussed here through the perspective of our work on nitric oxide-mediated signaling events. The nitric oxide-stimulated Src-FAK and Ras-ERK1/2 mitogen-activated protein kinases (MAPKs) oncogenic signaling pathways are discussed, highlighting the cross-talk between 2 major posttranslational modifications: protein phosphorylation and protein S-nitrosylation. In addition, we discuss the importance of nitric oxide synthases in cancer biology, focusing on the roles of endothelial nitric oxide synthase and arginase 2 in human thyroid tumor progression. A direct relationship between the expression levels of both enzymes was found in human follicular thyroid carcinoma. Finally, the antioncogenic, proapoptotic actions of nitric oxide based on its antiadhesive properties are presented and discussed. 2012 by Begell House, Inc
EMBASE:2013034704
ISSN: 2151-8017
CID: 217472

Regulatory effects of nitric oxide on Src kinase, FAK, p130Cas, and receptor protein tyrosine phosphatase alpha (PTP-alpha): a role for the cellular redox environment

Curcio, Marli F; Batista, Wagner L; Linares, Edlaine; Nascimento, Fabio D; Moraes, Miriam S; Borges, Roberta E; Sap, Jan; Stern, Arnold; Monteiro, Hugo P
The role of NO in regulating the focal adhesion proteins, Src, FAK, p130 Cas, and PTP-alpha, was investigated. Fibroblasts expressing PTP-alpha (PTP-alpha(WT) cells), fibroblasts "knockout" for PTP-alpha (PTP-alpha(-/-) cells), and "rescued" "knockout" fibroblasts (PTP-alpha A5/3 cells) were stimulated with either S-nitroso-N-acetylpenicillamine (SNAP) or fetal bovine serum (FBS). FBS increased inducible NO synthase in both cell lines. Activation of Src mediated either by SNAP or by FBS occurred independent of dephosphorylation of Tyr527 in PTP-alpha(-/-) cells. Both stimuli promoted dephosphorylation of Tyr527 and activation of Src kinase in PTP-alpha(WT) cells. NO-mediated activation of Src kinase affected the activities of FAK and p130Cas and was dependent on the expression of PTP-alpha. Analogous to tyrosine phosphorylation, SNAP and FBS stimulated differential generation of NO and S-nitrosylation of Src kinase in both cell lines. Incubation with SNAP resulted in higher levels of NO and S-nitrosylation of immunoprecipitated Src in PTP-alpha(-/-) cells (oxidizing redox environment) as compared with the levels of NO and S-nitrosylated Src in PTP-alpha(WT) cells (reducing redox environment). SNAP differentially stimulated cell proliferation of both cell lines is dependent on the intracellular redox environment, Src activity, and PTP-alpha expression. This dependence also is observed with FBS-stimulated cell migration.
PMID: 20055753
ISSN: 1523-0864
CID: 163555