Try a new search

Format these results:

Searched for:

person:trangs01

in-biosketch:yes

Total Results:

33


Stage-specific integration of maternal and embryonic peroxisome proliferator-activated receptor delta signaling is critical to pregnancy success

Wang, Haibin; Xie, Huirong; Sun, Xiaofei; Tranguch, Susanne; Zhang, Hao; Jia, Xiangxu; Wang, Dingzhi; Das, Sanjoy K; Desvergne, Beatrice; Wahli, Walter; DuBois, Raymond N; Dey, Sudhansu K
Successful pregnancy depends on well coordinated developmental events involving both maternal and embryonic components. Although a host of signaling pathways participate in implantation, decidualization, and placentation, whether there is a common molecular link that coordinates these processes remains unknown. By exploiting genetic, molecular, pharmacological, and physiological approaches, we show here that the nuclear transcription factor peroxisome proliferator-activated receptor (PPAR) delta plays a central role at various stages of pregnancy, whereas maternal PPARdelta is critical to implantation and decidualization, and embryonic PPARdelta is vital for placentation. Using trophoblast stem cells, we further elucidate that a reciprocal relationship between PPARdelta-AKT and leukemia inhibitory factor-STAT3 signaling pathways serves as a cell lineage sensor to direct trophoblast cell fates during placentation. This novel finding of stage-specific integration of maternal and embryonic PPARdelta signaling provides evidence that PPARdelta is a molecular link that coordinates implantation, decidualization, and placentation crucial to pregnancy success. This study is clinically relevant because deferral of on time implantation leads to spontaneous pregnancy loss, and defective trophoblast invasion is one cause of preeclampsia in humans.
PMID: 17965409
ISSN: 0021-9258
CID: 2157272

Maternal heparin-binding-EGF deficiency limits pregnancy success in mice

Xie, Huirong; Wang, Haibin; Tranguch, Susanne; Iwamoto, Ryo; Mekada, Eisuke; Demayo, Francesco J; Lydon, John P; Das, Sanjoy K; Dey, Sudhansu K
An intimate discourse between the blastocyst and uterus is essential for successful implantation. However, the molecular basis of this interaction is not clearly understood. Exploiting genomic Hbegf mutant mice, we show here that maternal deficiency of heparin-binding EGF-like growth factor (HB-EGF) defers on-time implantation, leading to compromised pregnancy outcome. We also demonstrate that amphiregulin, but not epiregulin, partially compensates for the loss of HB-EGF during implantation. In search of the mechanism of this compensation, we found that reduced preimplantation estrogen secretion from ovarian HB-EGF deficiency is a cause of sustained expression of uterine amphiregulin before the initiation of implantation. To explore the significance specifically of uterine HB-EGF in implantation, we examined this event in mice with conditional deletion of uterine HB-EGF and found that this specific loss of HB-EGF in the uterus still defers on-time implantation without altering preimplantation ovarian estrogen secretion. The observation of normal induction of uterine amphiregulin surrounding the blastocyst at the time of attachment in these conditional mutant mice suggests a compensatory role of amphiregulin for uterine loss of HB-EGF, preventing complete failure of pregnancy. Our study provides genetic evidence that HB-EGF is critical for normal implantation. This finding has high clinical relevance, because HB-EGF signaling is known to be important for human implantation.
PMCID:2084340
PMID: 17986609
ISSN: 1091-6490
CID: 2157262

MicroRNA regulation of cyclooxygenase-2 during embryo implantation

Chakrabarty, Anindita; Tranguch, Susanne; Daikoku, Takiko; Jensen, Kevin; Furneaux, Henry; Dey, Sudhansu K
The implantation process is complex, requiring reciprocal interactions between implantation-competent blastocysts and the receptive uterus. Because microRNAs (miRNAs) have major roles in regulating gene expression, we speculated that they participate in directing the highly regulated spatiotemporally expressed genetic network during implantation. Here, we show that two miRNAs, mmu-miR-101a and mmu-miR-199a*, are spatiotemporally expressed in the mouse uterus during implantation coincident with expression of cyclooxygenase-2, a gene critical for implantation. More interestingly, our in vitro gain- and loss-of-function experiments show that cyclooxygenase-2 expression is posttranscriptionally regulated by these two miRNAs. We report on miRNA-mediated regulation of uterine gene expression in the context of implantation. We believe that many other critical genes related to this process are also regulated by miRNAs. Thus, elucidating the physiological roles of uterine miRNAs will help us better understand the genetic control of implantation, the gateway to a successful pregnancy.
PMCID:1986627
PMID: 17848513
ISSN: 0027-8424
CID: 2157282

Maternal pentraxin 3 deficiency compromises implantation in mice

Tranguch, Susanne; Chakrabarty, Anindita; Guo, Yong; Wang, Haibin; Dey, Sudhansu K
Reduced litter sizes in mice missing pentraxin 3 (Ptx3) have been attributed to fertilization failure. However, our global gene expression studies showed high uterine Ptx3 expression at the implantation site in mice, suggesting its role in blastocyst implantation. We initiated molecular and genetic studies in mice to explore the importance of uterine Ptx3 in this process. We found that Ptx3 is expressed in a unique and transient fashion at implantation sites. With the initiation of implantation on midnight of Day 4 of pregnancy, Ptx3 is expressed exclusively in stromal cells at the site of blastocysts. On Day 5, its expression is more intense in decidualizing stromal cells, but it disappears on Day 6. The expression again becomes evident in the deciduum on Day 7, followed by a more robust expression on Day 8, particularly at the antimesometrial pole. From Day 9, with the initiation of placentation, Ptx3 expression becomes undetectable. These results suggest a role for PTX3 in implantation and decidualization. Indeed, deletion of Ptx3 results in both compromised implantation and decidualization. Interleukin 1B (IL1B), a known inducer of Ptx3, is also transiently expressed in stromal cells at the implantation site, suggesting that IL1B is an inducer of uterine Ptx3 expression. In fact, uterine Ptx3 expression follows that of Il1b induced by lipopolysaccharide treatment on Day 7 of pregnancy. Collectively, these findings provide evidence for an important role for PTX3 in implantation and decidualization. This study has clinical implications, since PTX3 is expressed in the receptive endometrium, and trophoblast cells influence decidual Ptx3 expression in humans.
PMID: 17538075
ISSN: 0006-3363
CID: 2157312

FKBP52 deficiency-conferred uterine progesterone resistance is genetic background and pregnancy stage specific

Tranguch, Susanne; Wang, Haibin; Daikoku, Takiko; Xie, Huirong; Smith, David F; Dey, Sudhansu K
Immunophilin FKBP52 serves as a cochaperone to govern normal progesterone (P(4)) receptor (PR) function. Using Fkbp52(-/-) mice, we show intriguing aspects of uterine P(4)/PR signaling during pregnancy. Implantation failure is the major phenotype found in these null females, which is conserved on both C57BL6/129 and CD1 backgrounds. However, P(4) supplementation rescued implantation and subsequent decidualization in CD1, but not C57BL6/129, null females. Surprisingly, experimentally induced decidualization in the absence of blastocysts failed in Fkbp52(-/-) mice on either background even with P(4) supplementation, suggesting that embryonic signals complement uterine signaling for this event. Another interesting finding was that while P(4) at higher than normal pregnancy levels conferred PR signaling sufficient for implantation in CD1 null females, these levels were inefficient in maintaining pregnancy to full term. However, elevating P(4) levels further restored PR signaling to a level optimal for successful term pregnancy with normal litter size. Collectively, the results show that the indispensability of FKBP52 in uterine P(4)/PR signaling is a function of genetic disparity and is pregnancy stage specific. Since there is evidence for a correlation between P(4) supplementation and reduced risks of P(4)-resistant recurrent miscarriages and remission of endometriosis, these findings have clinical implications for genetically diverse populations of women.
PMCID:1888571
PMID: 17571166
ISSN: 0021-9738
CID: 2157292

Extracellular signal-regulated kinase is a target of cyclooxygenase-1-peroxisome proliferator-activated receptor-delta signaling in epithelial ovarian cancer

Daikoku, Takiko; Tranguch, Susanne; Chakrabarty, Anindita; Wang, Dingzhi; Khabele, Dineo; Orsulic, Sandra; Morrow, Jason D; Dubois, Raymond N; Dey, Sudhansu K
The underlying causes of epithelial ovarian cancer (EOC) are unclear, and treatment options for patients with advanced disease are limited. There is evidence that the use of nonsteroidal anti-inflammatory drugs is associated with decreased risk of developing EOC. Nonsteroidal anti-inflammatory drugs inhibit cyclooxygenase (COX)-1 and COX-2, which catalyze prostaglandin biosynthesis. We previously showed that mouse and human EOCs have increased levels of COX-1, but not COX-2, and a COX-1-selective inhibitor, SC-560, attenuates prostaglandin production and tumor growth. However, the downstream targets of COX-1 signaling in EOC are not yet known. To address this question, we evaluated peroxisome proliferator-activated receptor delta (PPARdelta) expression and function in EOC. We found that EOC cells express high levels of PPARdelta, and neutralizing PPARdelta function reduces tumor growth in vivo. More interestingly, aspirin, a nonsteroidal anti-inflammatory drug that preferentially inhibits COX-1, compromises PPARdelta function and cell growth by inhibiting extracellular signal-regulated kinases 1/2, members of the mitogen-activated protein kinase family. Our study, for the first time, shows that whereas PPARdelta can be a target of COX-1, extracellular signal-regulated kinase is a potential target of PPARdelta. The ability of aspirin to inhibit EOC growth in vivo is an exciting finding because of its low cost, lack of cardiovascular side effects, and availability.
PMID: 17545608
ISSN: 0008-5472
CID: 2157302

Deficiency of co-chaperone immunophilin FKBP52 compromises sperm fertilizing capacity

Hong, Jiyoung; Kim, Sung Tae; Tranguch, Susanne; Smith, David F; Dey, Sudhansu K
FKBP52 is a member of the FK506-binding family of immunophilins and serves as a co-chaperone for steroid hormone nuclear receptors to govern appropriate hormone action in target tissues. Male mice missing Fkbp52 are infertile, and this infertility has been ascribed to compromised sensitivity of the anterior prostate, external genitalia, and other accessory sex organs to androgen. Here, we show additional defects contributing to infertility. We found that epididymal Fkbp52(-/-) sperm are sparse often with aberrant morphology, and they have reduced fertilizing capacity. This phenotype, initially observed in null males on a C57BL/6/129 background, is also maintained on a CD1 background. Expression studies show that while FKBP52 and androgen receptor are co-expressed in similar cell types in the epididymis, FKBP52 is also present in epididymal sperm flagella. Collectively, our results suggest that reduced number and abnormal morphology contribute to compromised fertilizing capacity of Fkbp52(-/-) sperm. This study is clinically relevant because unraveling the role of immunophilin signaling in male fertility will help identify new targets for male contraceptives and/or alleviate male infertility.
PMID: 17307907
ISSN: 1470-1626
CID: 2157322

Progesterone receptor requires a co-chaperone for signalling in uterine biology and implantation

Tranguch, Susanne; Smith, David F; Dey, Sudhansu K
Embryo implantation is absolutely dependent on the preparation of the uterus to the receptive stage and attainment by the blastocyst of implantation competency. Co-ordinated effects of progesterone and oestrogen are essential for these processes and determine the window of implantation. In rodents, a generalized stromal edema occurs before blastocyst attachment followed by uterine luminal closure. This leads to apposition of the blastocyst trophectoderm against the luminal epithelium and ultimately attachment. Progesterone is essential for luminal closure, which must occur for successful implantation. More importantly, progesterone is critical for almost every stage of pregnancy, including ovulation, fertilization, implantation, decidualization and pregnancy maintenance. Progesterone exerts its effects on target tissues primarily via nuclear progesterone receptor (PR) whose optimal activity is potentiated by an immunophilin co-chaperone, FK-506 binding protein 4 (FKBP52). While mice lacking PR are infertile due to complete failure of ovulation, fertilization, and implantation, female mice with targeted deletion of the Fkbp52 gene are infertile specifically because of implantation failure resulting from compromised uterine receptivity. This review highlights the evolution of knowledge about progesterone signalling during early pregnancy. Future studies are likely to provide a better understanding of FKBP52-PR signalling in promoting uterine receptivity for implantation and may reveal new targets for improving infertility.
PMID: 20483398
ISSN: 1472-6491
CID: 2157332

Progesterone receptor requires a co-chaperone for signalling in uterine biology and implantation

Tranguch, Susanne; Smith, David F; Dey, Sudhansu K
Embryo implantation is absolutely dependent on the preparation of the uterus to the receptive stage and attainment by the blastocyst of implantation competency. Co-ordinated effects of progesterone and oestrogen are essential for these processes and determine the window of implantation. In rodents, a generalized stromal edema occurs before blastocyst attachment followed by uterine luminal closure. This leads to apposition of the blastocyst trophectoderm against the luminal epithelium and ultimately attachment. Progesterone is essential for luminal closure, which must occur for successful implantation. More importantly, progesterone is critical for almost every stage of pregnancy, including ovulation, fertilization, implantation, decidualization and pregnancy maintenance. Progesterone exerts its effects on target tissues primarily via nuclear progesterone receptor (PR) whose optimal activity is potentiated by an immunophilin co-chaperone, FK-506 binding protein 4 (FKBP52). While mice lacking PR are infertile due to complete failure of ovulation, fertilization, and implantation, female mice with targeted deletion of the Fkbp52 gene are infertile specifically because of implantation failure resulting from compromised uterine receptivity. This review highlights the evolution of knowledge about progesterone signalling during early pregnancy. Future studies are likely to provide a better understanding of FKBP52-PR signalling in promoting uterine receptivity for implantation and may reveal new targets for improving infertility.
PMID: 17169175
ISSN: 1472-6483
CID: 2157342

Zymosan-induced glycerylprostaglandin and prostaglandin synthesis in resident peritoneal macrophages: roles of cyclo-oxygenase-1 and -2

Rouzer, Carol A; Tranguch, Susanne; Wang, Haibin; Zhang, Hao; Dey, Sudhansu K; Marnett, Lawrence J
COX [cyclo-oxygenase; PG (prostaglandin) G/H synthase] oxygenates AA (arachidonic acid) and 2-AG (2-arachidonylglycerol) to endoperoxides that are converted into PGs and PG-Gs (glycerylprostaglandins) respectively. In vitro, 2-AG is a selective substrate for COX-2, but in zymosan-stimulated peritoneal macrophages, PG-G synthesis is not sensitive to selective COX-2 inhibition. This suggests that COX-1 oxygenates 2-AG, so studies were carried out to identify enzymes involved in zymosan-dependent PG-G and PG synthesis. When macrophages from COX-1-/- or COX-2-/- mice were treated with zymosan, 20-25% and 10-15% of the PG and PG-G synthesis observed in wild-type cells respectively was COX-2 dependent. When exogenous AA and 2-AG were supplied to COX-2-/- macrophages, PG and PG-G synthesis was reduced as compared with wild-type cells. In contrast, when exogenous substrates were provided to COX-1-/- macrophages, PG-G but not PG synthesis was reduced. Product synthesis also was evaluated in macrophages from cPLA(2alpha) (cytosolic phospholipase A2alpha)-/- mice, in which zymosan-induced PG synthesis was markedly reduced, and PG-G synthesis was increased approx. 2-fold. These studies confirm that peritoneal macrophages synthesize PG-Gs in response to zymosan, but that this process is primarily COX-1-dependent, as is the synthesis of PGs. They also indicate that the 2-AG and AA used for PG-G and PG synthesis respectively are derived from independent pathways.
PMCID:1570173
PMID: 16787386
ISSN: 1470-8728
CID: 2157352