Try a new search

Format these results:

Searched for:

person:vadasc02

in-biosketch:yes

Total Results:

81


Involvement of ceramide in ethanol-induced apoptotic neurodegeneration in the neonatal mouse brain

Saito, Mariko; Chakraborty, Goutam; Hegde, Medha; Ohsie, Jason; Paik, Sun-Mee; Vadasz, Csaba; Saito, Mitsuo
J. Neurochem. (2010) 115, 168-177. ABSTRACT: Acute administration of ethanol to 7-day-old mice is known to cause robust apoptotic neurodegeneration in the brain. Our previous studies have shown that such ethanol-induced neurodegeneration is accompanied by increases in lipids, including ceramide, triglyceride (TG), cholesterol ester (ChE), and N-acylphosphatidylethanolamine (NAPE) in the brain. In this study, the effects of ethanol on lipid profiles as well as caspase 3 activation were examined in the cortex, hippocampus, cerebellum, and inferior colliculus of the postnatal day 7 mouse brain. We found that the cortex, hippocampus, and inferior colliculus, which showed substantial caspase 3 activation by ethanol, manifested significant elevations in ceramide, TG, and NAPE. In contrast, the cerebellum, with the least caspase 3 activation, failed to show significant changes in ceramide and TG, and exhibits much smaller increases in NAPE than other brain regions. Ethanol-induced increases in ChE were observed in all brain regions tested. Inhibitors of serine palmitoyltransferase effectively blocked ethanol-induced caspase 3 activation as well as elevations in ceramide, ChE, and NAPE. Immunohistochemical studies indicated that the expression of serine palmitoyltransferase was mainly localized in neurons and was enhanced in activated caspase 3-positive neurons generated by ethanol. These results indicate that de novo ceramide synthesis has a vital role in ethanol-induced apoptotic neurodegeneration in the developing brain
PMCID:2939968
PMID: 20663015
ISSN: 1471-4159
CID: 112428

Tau phosphorylation and cleavage in ethanol-induced neurodegeneration in the developing mouse brain

Saito, Mariko; Chakraborty, Goutam; Mao, Rui-Fen; Paik, Sun-Mee; Vadasz, Csaba; Saito, Mitsuo
Previous studies indicated that ethanol-induced neurodegeneration in postnatal day 7 (P7) mice, widely used as a model for the fetal alcohol spectrum disorders, was accompanied by glycogen synthase kinase-3beta (GSK-3beta) and caspase-3 activation. Presently, we examined whether tau, a microtubule associated protein, is modified by GSK-3beta and caspase-3 in ethanol-treated P7 mouse forebrains. We found that ethanol increased phosphorylated tau recognized by the paired helical filament (PHF)-1 antibody and by the antibody against tau phosphorylated at Ser199. Ethanol also generated tau fragments recognized by an antibody against caspase-cleaved tau (C-tau). C-tau was localized in neurons bearing activated caspase-3 and fragmented nuclei. Over time, cell debris and degenerated projections containing C-tau appeared to be engulfed by activated microglia. A caspase-3 inhibitor partially blocked C-tau formation. Lithium, a GSK-3beta inhibitor, blocked ethanol-induced caspase-3 activation, phosphorylated tau elevation, C-tau formation, and microglial activation. These results indicate that tau is phosphorylated by GSK-3beta and cleaved by caspase-3 during ethanol-induced neurodegeneration in the developing brain
PMCID:2848126
PMID: 20049527
ISSN: 1573-6903
CID: 140578

Developmental profiles of lipogenic enzymes and their regulators in the neonatal mouse brain

Saito, Mariko; Chakraborty, Goutam; Mao, Rui-Fen; Vadasz, Csaba; Saito, Mitsuo
It has been shown that lipogenic enzymes, such as fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), are highly expressed in the rodent brain during the early neonatal period and decline thereafter. However, cellular localization of these enzymes is unknown. Presently, we examined developmental changes in the levels and cellular localization of FAS and ACC, and their putative regulators, sterol-regulatory element-binding protein (SREBP)-1 and AMP-activated protein kinase (AMPK) in the mouse brain. Levels of these proteins including phosphorylated forms of ACC and AMPK decreased between postnatal day 4 (P4) and P19. Immunohistochemical studies indicated that FAS, ACC, AMPK, and SREBP-1 were expressed in neurons at P7, while FAS was found mostly in cells of oligodendrocyte lineage at P19. These studies suggest that neurons in the early neonatal brain are involved in do novo fatty acid synthesis
PMCID:2746256
PMID: 19418221
ISSN: 1573-6903
CID: 128991

Genetic and pharmacological manipulations of the CB(1) receptor alter ethanol preference and dependence in ethanol preferring and nonpreferring mice

Vinod, K Yaragudri; Yalamanchili, Ratnakumar; Thanos, Panayotis K; Vadasz, Csaba; Cooper, Thomas B; Volkow, Nora D; Hungund, Basalingappa L
Recent studies have indicated a role for the endocannabinoid system in ethanol-related behaviors. This study examined the effect of pharmacological activation, blockade, and genetic deletion of the CB(1) receptors on ethanol-drinking behavior in ethanol preferring C57BL/6J (B6) and ethanol nonpreferring DBA/2J (D2) mice. The deletion of CB(1) receptor significantly reduced the ethanol preference. Although the stimulation of the CB(1) receptor by CP-55,940 markedly increased the ethanol preference, this effect was found to be greater in B6 than in D2 mice. The antagonism of CB(1) receptor function by SR141716A led to a significant reduction in voluntary ethanol preference in B6 than D2 mice. A significant lower hypothermic and greater sedative response to acute ethanol administration was observed in both the strains of CB(1) -/- mice than wild-type mice. Interestingly, genetic deletion and pharmacological blockade of the CB(1) receptor produced a marked reduction in severity of handling-induced convulsion in both the strains. The radioligand binding studies revealed significantly higher levels of CB(1) receptor-stimulated G-protein activation in the striatum of B6 compared to D2 mice. Innate differences in the CB(1) receptor function might be one of the contributing factors for higher ethanol drinking behavior. The antagonists of the CB(1) receptor may have therapeutic potential in the treatment of ethanol dependence
PMCID:2667104
PMID: 18509854
ISSN: 0887-4476
CID: 93993

Lithium blocks ethanol-induced modulation of protein kinases in the developing brain

Chakraborty, Goutam; Saito, Mitsuo; Mao, Rui-Fen; Wang, Ray; Vadasz, Csaba; Saito, Mariko
Lithium has been shown to be neuroprotective against various insults including ethanol exposure. We previously reported that ethanol-induced apoptotic neurodegeneration in the postnatal day 7 (P7) mice is associated with decreases in phosphorylation levels of Akt, glycogen synthase kinase-3beta (GSK-3beta), and AMP-activated protein kinase (AMPK), and alteration in lipid profiles in the brain. Here, P7 mice were injected with ethanol and lithium, and the effects of lithium on ethanol-induced alterations in phosphorylation levels of protein kinases and lipid profiles in the brain were examined. Immunoblot and immunohistochemical analyses showed that lithium significantly blocked ethanol-induced caspase-3 activation and reduction in phosphorylation levels of Akt, GSK-3beta, and AMPK. Further, lithium inhibited accumulation of cholesterol ester (ChE) and N-acylphosphatidylethanolamine (NAPE) triggered by ethanol in the brain. These results suggest that Akt, GSK-3beta, and AMPK are involved in ethanol-induced neurodegeneration and the neuroprotective effects of lithium by modulating both apoptotic and survival pathways
PMCID:2279304
PMID: 18190791
ISSN: 1090-2104
CID: 93994

Glutamate receptor metabotropic 7 is cis-regulated in the mouse brain and modulates alcohol drinking

Vadasz, Csaba; Saito, Mariko; Gyetvai, Beatrix M; Oros, Melinda; Szakall, Istvan; Kovacs, Krisztina M; Prasad, Vidudala V T S; Toth, Reka
Alcoholism is a heritable disease that afflicts about 8% of the adult population. Its development and symptoms, such as craving, loss of control, physical dependence, and tolerance, have been linked to changes in mesolimbic, mesocortical neurotransmitter systems utilizing biogenic amines, GABA, and glutamate. Identification of genes predisposing to alcoholism, or to alcohol-related behaviors in animal models, has been elusive because of variable interactions of multiple genes with relatively small individual effect size and sensitivity of the predisposing genotype to lifestyle and environmental factors. Here, using near-isogenic advanced animal models with reduced genetic background interactions, we integrate gene mapping and gene mRNA expression data in segregating and congenic mice and identify glutamate receptor metabotropic 7 (Grm7) as a cis-regulated gene for alcohol consumption. Traditionally, the mesoaccumbal dopamine reward hypothesis of addiction and the role of the ionotropic glutamate receptors have been emphasized. Our results lend support to an emerging direction of research on the role of metabotropic glutamate receptors in alcoholism and drug addiction. These data suggest for the first time that Grm7 is a risk factor for alcohol drinking and a new target in addiction therapy
PMID: 17936574
ISSN: 0888-7543
CID: 75843

Mesencephalic dopamine neuron number and tyrosine hydroxylase content: Genetic control and candidate genes

Vadasz, C; Smiley, J F; Figarsky, K; Saito, M; Toth, R; Gyetvai, B M; Oros, M; Kovacs, K K; Mohan, P; Wang, R
The mesotelencephalic dopamine system shows substantial genetic variation which fundamentally affects normal and pathological behaviors related to motor function, motivation, and learning. Our earlier radioenzyme assay studies demonstrated significantly higher activity of tyrosine hydroxylase (TH), the first and rate limiting enzyme in the biosynthesis of catecholamine neurotransmitters, in the substantia nigra-ventral tegmental area of BALB/cJ mice in comparison with that of C57BL/6ByJ mice. Here, using quantitative immunoblotting and immunocytochemistry, we tested the hypothesis that mesencephalic TH protein content and number of nigral TH-positive neurons show strain-dependent differences in C57BL/6ByJ and BALB/cJ parallel to those observed in the TH activity studies. Immunoblotting experiments detected significantly higher mesencephalic TH protein content in BALB/cJ in comparison to C57BL/6ByJ (P<0.05). Immunocytochemical studies demonstrated that the number of TH-positive cells in substantia nigra was 31.3% higher in BALB/cJ than that in C57BL/6ByJ (P<0.01), while the average dopamine neuron volume was not significantly different. In a search for candidate genes that modulate TH content and the size of mesencephalic dopamine neuron populations we also studied near-isogenic mouse sublines derived from the C57BL/6ByJ and BALB/cJ progenitor strains. A whole-genome scan with 768 single nucleotide polymorphism markers indicated that two sublines, C4A6/N and C4A6/B, were genetically very similar (98.3%). We found significantly higher mesencephalic TH protein content in C4A6/B in comparison to C4A6/N (P=0.01), and a tendency for higher number of dopamine neurons in the substantia nigra in C4A6/B in comparison to C4A6/N, which, however, did not reach statistical significance. To identify the genetic source of the TH content difference we analyzed the single nucleotide polymorphism (SNP) genotype data of the whole-genome scan, and detected two small differential chromosome segments on chr. 13 and chr. 14. Microarray gene expression studies and bioinformatic analysis of the two differential regions implicated two cis-regulated genes (Spock1 and Cxcl14, chr. 13), and two growth factor genes [bone morphogenetic protein 6 (Bmp6) (chr. 13), and fibroblast growth factor 14 (Fgf14) (chr. 14)]. Taken together, the results suggest that (1) nigral dopamine neuron number and TH protein content may be genetically associated but further studies are needed to establish unequivocally this linkage, and (2) Spock1, Cxcl14, Bmp6, and Fgf14 are novel candidates for modulating the expression and maintenance of TH content in mesencephalic dopamine neurons in vivo
PMCID:2128036
PMID: 17920205
ISSN: 0306-4522
CID: 75475

Ethanol alters lipid profiles and phosphorylation status of AMP-activated protein kinase in the neonatal mouse brain

Saito, Mariko; Chakraborty, Goutam; Mao, Rui-Fen; Wang, Ray; Cooper, Thomas B; Vadasz, Csaba; Saito, Mitsuo
Previously, we have shown that ethanol-induced apoptosis in cultured neurons is accompanied by changes in cellular lipid profiles. In the present study, the effects of ethanol on brain lipid metabolism were studied using 7-day-old C57BL/6ByJ mice, which display apoptotic neurodegeneration upon exposure to ethanol. The brain lipids were extracted 4-24 h after the ethanol or saline treatment, and analyzed by TLC. We found that the levels of triglyceride, cholesterol ester, ceramide, and N-acylphosphatidylethanolamine increased significantly in the brains of ethanol-treated mice compared to those of saline-treated mice. Concomitantly, ethanol reduced Thr172 phosphorylation of AMP-activated protein kinase (AMPK) alpha subunits. Ethanol also reduced phosphorylation of acetyl-CoA carboxylase, a substrate of AMPK and a lipogenic enzyme known to be activated by dephosphorylation. In contrast, lipid profiles of 19-day-old mouse brains, which scarcely manifested neurodegeneration upon ethanol exposure, were not significantly affected by ethanol. Also, the basal levels of Thr172-phosphorylated AMPK alpha were lower in these brains than in 7-day-old mouse brains, and no detectable changes in the phosphorylation status were observed by ethanol treatment. Our findings indicate that the ethanol-induced apoptotic neurodegeneration observed in mice during restricted developmental periods is accompanied by alterations in both the lipid content and the activity of AMPK in the brain
PMID: 17683484
ISSN: 0022-3042
CID: 93995

Mapping of QTLs for oral alcohol self-administration in B6.C and B6.I quasi-congenic RQI strains

Vadasz, Csaba; Saito, Mariko; Gyetvai, Beatrix M; Oros, Melinda; Szakall, Istvan; Kovacs, Krisztina M; Prasad, Vidudala V T S; Morahan, Grant; Toth, Reka
One strategy to identify neurochemical pathways of addiction is to map the relevant genes. In the present study we used 43 B6.C and 35 B6.I inbred RQI mouse strains, carrying <3% donor genome on C57BL/6ByJ background, for gene mapping. The strains were phenotyped for consumption of alcohol (12% v/v) in a two-bottle-choice paradigm, and genotyped for 396 microsatellite markers. The current mapping study extends our earlier experiment scanning five mouse chromosomes (Vadasz et al. (2000) Scanning of five chromosomes for alcohol consumption loci. Alcohol 22:25-34) to a whole-genome study, and discusses the differences and limitations. Data were analyzed with composite interval (CIM) and multiple interval (MIM) QTL mapping methods. CIM of B6.C strains detected significant QTLs on chrs. 6 and 12. A suggestive, but not significant, locus was detected in the B6.I strains on chr. 12. The best MIM model for B6.C strains confirmed one QTL on chr. 6 and one QTL on chr. 12, while the MIM model for the B6.I strains confirmed the suggestive locus on chr. 12. Some of the QTLs for alcohol consumption are new, while others confirm previously reported QTLs for alcohol preference, and alcohol acceptance
PMCID:2595145
PMID: 17273929
ISSN: 0364-3190
CID: 93997

Effects of gangliosides on ethanol-induced neurodegeneration in the developing mouse brain

Saito, Mariko; Mao, Rui-Fen; Wang, Ray; Vadasz, Csaba; Saito, Mitsuo
BACKGROUND: Ethanol exposure induces apoptotic neurodegeneration in the developing rodent brain during synaptogenesis. This process has been studied as a model for fetal alcohol syndrome. Previously, we have shown that gangliosides and LIGA20 (a semisynthetic derivative of GM1 ganglioside) attenuate ethanol-induced apoptosis in cultured neurons. In the present study, the effects of GM1 and LIGA20 on ethanol-induced apoptotic neurodegeneration were examined using an in vivo neonatal mouse model. METHODS: Seven-day-old C57BL/6By (B6By) mice were pretreated twice with intraperitoneal administration of GM1 (30 mg/kg), LIGA20 (2.5 mg/kg), or saline, followed by subcutaneous injection of either saline or ethanol (2.5 g/kg) twice with a 2 hours interval. Then the brains were: (1) perfusion-fixed 24 hours after the first ethanol injection, and the extent of neurodegeneration was assessed by cupric silver staining of the brain sections, or (2) perfusion-fixed 8 hours after the first ethanol injection, and the sections were immunostained with anti-cleaved (activated) caspase-3 antibody to evaluate caspase-3 activation. RESULTS: The comparison of cupric silver stained coronal sections indicates that ethanol-induced widespread neurodegeneration in the forebrains of B6By mice was reduced overall by GM1 and LIGA20 pretreatments. The extent of neurodegeneration detected by silver impregnation and activated caspase-3 immunostaining was quantified in the cingulate and retrosplenial cortices, which were the regions most severely affected by ethanol. The results indicate that GM1 and LIGA20 pretreatments induced statistically significant reductions-approximately 50% of the ethanol-treated samples-in silver impregnation and activated caspase-3 immunostaining. No significant differences were observed between saline controls and samples treated with GM1 or LIGA20 alone. CONCLUSIONS: These results indicate that GM1 and LIGA20, which have been shown to be neuroprotective against insults caused by various agents, partially attenuate ethanol-induced apoptotic neurodegeneration in the developing mouse brain
PMID: 17374046
ISSN: 0145-6008
CID: 93996