Try a new search

Format these results:

Searched for:

person:veera01

Total Results:

36


Cdk5 is a key factor in tau aggregation and tangle formation in vivo

Noble W; Olm V; Takata K; Casey E; Mary O; Meyerson J; Gaynor K; LaFrancois J; Wang L; Kondo T; Davies P; Burns M; Veeranna; Nixon R; Dickson D; Matsuoka Y; Ahlijanian M; Lau LF; Duff K
Tau aggregation is a common feature of neurodegenerative diseases such as Alzheimer's disease, and hyperphosphorylation of tau has been implicated as a fundamental pathogenic mechanism in this process. To examine the impact of cdk5 in tau aggregation and tangle formation, we crossed transgenic mice overexpressing the cdk5 activator p25, with transgenic mice overexpressing mutant (P301L) human tau. Tau was hyperphosphorylated at several sites in the double transgenics, and there was a highly significant accumulation of aggregated tau in brainstem and cortex. This was accompanied by increased numbers of silver-stained neurofibrillary tangles (NFTs). Insoluble tau was also associated with active GSK. Thus, cdk5 can initiate a major impact on tau pathology progression that probably involves several kinases. Kinase inhibitors may thus be beneficial therapeutically
PMID: 12765608
ISSN: 0896-6273
CID: 60993

Phosphorylation of MEK1 by cdk5/p35 down-regulates the mitogen-activated protein kinase pathway

Sharma P; Veeranna; Sharma M; Amin ND; Sihag RK; Grant P; Ahn N; Kulkarni AB; Pant HC
Cyclin-dependent protein kinase 5 (cdk5), a member of the cdk family, is active mainly in postmitotic cells and plays important roles in neuronal development and migration, neurite outgrowth, and synaptic transmission. In this study we investigated the relationship between cdk5 activity and regulation of the mitogen-activated protein (MAP) kinase pathway. We report that cdk5 phosphorylates the MAP kinase kinase-1 (MEK1) in vivo as well as the Ras-activated MEK1 in vitro. The phosphorylation of MEK1 by cdk5 resulted in inhibition of MEK1 catalytic activity and the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. In p35 (cdk5 activator) -/- mice, which lack appreciable cdk5 activity, we observed an increase in the phosphorylation of NF-M subunit of neurofilament proteins that correlated with an up-regulation of MEK1 and ERK1/2 activity. The activity of a constitutively active MEK1 with threonine 286 mutated to alanine (within a TPXK cdk5 phosphorylation motif in the proline-rich domain) was not affected by cdk5 phosphorylation, suggesting that Thr286 might be the cdk5/p35 phosphorylation-dependent regulatory site. These findings support the hypothesis that cdk5 and the MAP kinase pathway cross-talk in the regulation of neuronal functions. Moreover, these data and the recent studies of Harada et al. (Harada, T., Morooka, T., Ogawa, S., and Nishida, E. (2001) Nat. Cell Biol. 3, 453-459) have prompted us to propose a model for feedback down-regulation of the MAP kinase signal cascade by cdk5 inactivation of MEK1
PMID: 11684694
ISSN: 0021-9258
CID: 48163

Synergistic contributions of cyclin-dependant kinase 5/p35 and Reelin/Dab1 to the positioning of cortical neurons in the developing mouse brain

Ohshima T; Ogawa M; Veeranna; Hirasawa M; Longenecker G; Ishiguro K; Pant HC; Brady RO; Kulkarni AB; Mikoshiba K
Cyclin-dependent kinase (Cdk) 5 is a unique member of the Cdk family, because Cdk5 kinase activity is detected only in the nervous tissue. Two neuron-specific activating subunits of Cdk5, p35 and p39, have been identified. Overlapping expression pattern of these isoforms in the embryonic mouse brain and the significant residual Cdk5 kinase activity in brain homogenate of the p35-/- mice indicate the redundant functions of the Cdk5 activators in vivo. Severe neuronal migration defects in p35-/-Cdk5 +/- mice further support the idea that the redundant expression of the Cdk5 activators may cause a milder phenotype in p35-/- mice compared with Cdk5-/- mice. Mutant mice lacking either Cdk5 or p35 exhibit certain similarities with Reelin/Dab1-mutant mice in the disorganization of cortical laminar structure in the brain. To elucidate the relationship between Cdk5/p35 and Reelin/Dab1 signaling, we generated mouse lines that have combined defects of these genes. The addition of heterozygosity of either Dab1 or Reelin mutation to p35-/- causes the extensive migration defects of cortical neurons in the cerebellum. In the double-null mice of p35 and either Dab1 or Reelin, additional migration defects occur in the Purkinje cells in the cerebellum and in the pyramidal neurons in the hippocampus. These additional defects in neuronal migration in mice lacking both Cdk5/p35 and Reelin/Dab1 indicate that Cdk5/p35 may contribute synergistically to the positioning of the cortical neurons in the developing mouse brain
PMCID:30213
PMID: 11226314
ISSN: 0027-8424
CID: 24252

Neuronal cyclin-dependent kinase 5 activity is critical for survival

Tanaka T; Veeranna; Ohshima T; Rajan P; Amin ND; Cho A; Sreenath T; Pant HC; Brady RO; Kulkarni AB
Cyclin-dependent kinase 5 (Cdk5) null mice exhibit a unique phenotype characterized by perinatal mortality, disrupted cerebral cortical layering attributable to abnormal neuronal migration, lack of cerebellar foliation, and chromatolytic changes of neurons in the brainstem and the spinal cord. Because Cdk5 is expressed in both neurons and astrocytes, it has been unclear whether this phenotype is primarily attributable to defects in neurons or in astrocytes. Herein we report reconstitution of Cdk5 expression in neurons in Cdk5 null mice and its effect on the null phenotype. Unlike the Cdk5 null mice, the reconstituted Cdk5 null mice that express the Cdk5 transgene under the p35 promoter (TgKO mice) were viable and fertile. Because Cdk5 expression is mainly limited to neurons in these mice and rescues the defects in the nervous system of the Cdk5 null phenotype, it clearly demonstrates that Cdk5 activity is necessary for normal development and survival of p35-expressing neurons
PMID: 11160434
ISSN: 0270-6474
CID: 24253

Cdk5 and MAPK are associated with complexes of cytoskeletal proteins in rat brain

Veeranna; Shetty KT; Takahashi M; Grant P; Pant HC
Neurofilament proteins, the major cytoskeletal components of large myelinated axons, are highly phosphorylated by second messenger-dependent and -independent kinases. These kinases, together with tubulins and other cytoskeletal proteins, have been shown to bind to neurofilament preparations. Cdk5 and Erk2, proline-directed kinases in neuronal tissues, phosphorylate the Lys-Ser-Pro (KSP) repeats in tail domains of NF-H, NF-M, and other axonal proteins such as tau and synapsin. In neurofilament and microtubule preparations from rat brain, we demonstrated by Western blot analysis that cdk5, a neuronal cyclin dependent kinase and Erk1/2 were associated with complexes of NF proteins, tubulins and tau. Using P13(suc1) affinity chromatography, a procedure known to bind cdc2-like kinases in proliferating cells with high affinity, we obtained a P13 complex from a rat brain extract exhibiting the same profiles of cdk5 and Erk2 bound to cytoskeletal proteins. The phosphorylation activities of these preparations and the effect of the cdk5 inhibitor, butyrolactone, were consistent with the presence of active kinases. Finally, during a column fractionation and purification of Erk kinases from rat brain extracts, fractions enriched in Erk kinase activity also exhibited co-elution of phosphorylated NF-H, tubulin, tau and cdk5. We suggest that in mammalian brain, different kinases, their regulators and phosphatases form multimeric complexes with cytoskeletal proteins and regulate multisite phosphorylation from synthesis in the cell body to transport and assembly in the axon
PMID: 10762698
ISSN: 0169-328x
CID: 24255

Regulation of axonal neurofilament phosphorylation

Pant HC; Veeranna; Grant P
PMID: 10842750
ISSN: 0070-2137
CID: 24254

Phosphorylation Activity in the Alzheimer's Disease and Normal Brain is Modulated by Microtubule-Associated Protein, Tau in Vitro

Pant, Manish K.; [Veeranna]; Amin, Niranjana D.; Amin, Nivee; Pant, Harish C.
One of the hallmarks of Alzheimer's Disease is the presence of abundant neurofibrillary tangles (NFTs) in the brains of affected individuals. Hyperphosphorylated tau is a major component of paired helical filaments (PHFs) in NFTs. Tau is a neuronal microtubule associated protein found primarily in axons. Normal tau promotes tubulin polymerization and stabilizes microtubule (MT) structures, whereas hyperphosphorylated tau reduces its affinity for MTs and destabilizes MT-structures. This results in the disruption of vital cellular processes (e.g. axonal transport) and leads to the degeneration of affected neurons. Processes leading to the hyperphosphorylation of tau and formation of neurofibrillary lesions in Alzheimer's Disease (AD) brains are not understood. Phosphorylation of a substrate molecule like tau depends upon the equilibrium between kinase and phosphatase activities and the availability of their substrate molecules in a given system. Therefore, to understand the relative roles of kinase and phosphatase activities, we studied the long-term kinetics of phosphorylation in AD and control brain extracts in the presence and absence of the phosphatase inhibitor okadaic acid (OA) using histone, casein and bacterially expressed tau as exogenous substrates. It was found that both kinase and phosphatase activities were higher in AD compared to control brains. Surprisingly, between 18 and 24 hours, there was a robust increase in phosphorylation of endogenous proteins in the brain extracts only when bacterially expressed tau was present in the phosphorylation reaction mixture. This pattern of phosphorylation activity was unaffected by OA. Significant difference in the phosphorylation of tau isoforms was also seen during this period. These data suggest that the expression and differential phosphorylation of certain tau isoforms may be responsible for the robust increase in phosphorylation and may play an important role in Alzheimer's pathology.
PMID: 12214002
ISSN: 1875-8908
CID: 3807712

Calcium influx and membrane depolarization induce phosphorylation of neurofilament (NF-M) KSP repeats in PC12 cells

Li BS; Veeranna; Grant P; Pant HC
Signals activating the kinases that phosphorylate neurofilament proteins in the axon remain unknown. In a previous study, we have demonstrated that a constitutively active form of MEK1 activates Erk1 and Erk2 kinases, which phosphorylate co-transfected NF-M in NIH 3T3 cells. In this study, we report the activation of endogenous Erk1 and Erk2 by membrane depolarization and calcium influx through L-type calcium channels, which resulted in phosphorylation of the NF-M tail domain in PC12 cells. This phosphorylation was inhibited in the presence of nifedipine, an L-type calcium channel inhibitor, and PD98059, a specific MEK1 inhibitor. Our data suggest a mechanism linking calcium influx through voltage-gated calcium channels with the MAP kinase pathway and NF-M tail domain phosphorylation in cell body and neurite. These findings may provide significant new insights into mechanisms involved in some neurological diseases
PMID: 10381546
ISSN: 0169-328x
CID: 24256

Activation of mitogen-activated protein kinases (Erk1 and Erk2) cascade results in phosphorylation of NF-M tail domains in transfected NIH 3T3 cells

Li BS; Veeranna; Gu J; Grant P; Pant HC
Neurofilaments (NFs) are neuron-specific intermediate filaments, and are the major cytoskeletal component in large myelinated axons. Lysine-serine-proline (KSP) repeats in the tail domains of high molecular weight NF proteins (NF-M and NF-H) are extensively phosphorylated in vivo in the axon. This phosphorylation in the tail domain has been postulated to play an important role in mediating neuron-specific properties, including axonal caliber and conduction velocity. Recent studies have shown that the mitogen-activated protein kinases (extracellular signal-regulated kinases, Erk1 and Erk2) phosphorylate KSP motifs in peptide substrates derived from the NF-M and NF-H tail domains in vitro. However, it is not clear whether activation of the mitogen activated protein (MAP) kinase pathway is able to phosphorylate these domains in vivo. To answer this question, a constitutively active form of mitogen-activated Erk activating kinase (MEK1) was cotransfected with an NF-M expression construct into NIH 3T3 cells. The activated mutant, but not the dominant negative mutant, induced phosphorylation of NF-M. In addition, it was shown that epidermal growth factor, which induces the MAP kinase cascade in NIH 3T3 cells, also activated endogenous Erk1 and Erk2 and NF-M tail domain phosphorylation in the transfected cells. These results present direct evidence that in-vivo activation of Erk1 and Erk 2 is sufficient for NF-M tail domain phosphorylation in transfected cells
PMID: 10231383
ISSN: 0014-2956
CID: 24257

Characterization of serine and threonine phosphorylation sites in beta-elimination/ethanethiol addition-modified proteins by electrospray tandem mass spectrometry and database searching

Jaffe H; Veeranna; Pant HC
A new method for the characterization of serine and threonine phosphorylation sites in proteins has been developed. After modification of a phosphoprotein by beta-elimination/ethanethiol addition and conversion of phosphoserine and phosphothreonine residues to S-ethylcysteinyl or beta-methyl-S-ethylcysteinyl residues, the modified protein was subjected to proteolytic digestion. Resulting digests were analyzed by a combination of microbore liquid chromatography, electrospray ionization tandem (MS/MS) ion trap mass spectrometry and database searching to identify original phosphorylated residues. The computer program utilized (SEQUEST) is capable of identifying peptides and modified residues from uninterpreted MS/MS spectra, and using this method, all of the five known phosphorylation sites in bovine beta-casein were identified. Application of the method to multiply phosphorylated human high molecular weight neurofilament protein (NF-H) resulted in the identification of 21 peptides and their modified residues and hence, the in vivo phosphorylation sites. These included 26 KSP and 1 KTP site, all of which occur in the KSP repeat C-terminal tail domain (residues 502-823). One site at residue 518 was previously uncharacterized. A novel non-KSP serine at residue 421 near the KLLEGEE region in a IPFSLPE motif was characterized as phosphorylated (or glycosylated). The 27 characterized phosphorylation sites occur at S/TP residues in the following motifs: KSPVKEE, KSPAEAK, KSPEKEE, KSPAEVK, KSPEKAK, KSPPEAK, KSPVKAE, and KTPAKEE. On the basis of kinase consensus sequences, all of these motifs, including the previously unreported KTPAKEE motif, can be phosphorylated by proline-directed kinases. Advantages of the new method vis-a-vis our previously reported method [Jaffe, H., Veeranna, Shetty, K. T., and Pant, H. C. (1998) Biochemistry 37, 3931-3940] include (i) production of diastereomers eluting at different retention times increased the chances of peptide identification, (ii) increased hydrophobicity and hence retention time of the modified peptides, (iii) facilitation of positive ion production, and (iv) increased susceptibility to tryptic digestion as a result of conversion of negatively charged phosphorylated residues to neutral S-ethylcysteine or beta-methyl-S-ethylcysteine residues
PMID: 9819213
ISSN: 0006-2960
CID: 24258