Try a new search

Format these results:

Searched for:

person:vija01

in-biosketch:true

Total Results:

11


MDCT for computerized volumetry of pneumothoraces in pediatric patients

Cai, Wenli; Lee, Edward Y; Vij, Abhinav; Mahmood, Soran A; Yoshida, Hiroyuki
RATIONALE AND OBJECTIVES/OBJECTIVE:Our purpose in this study was to develop an automated computer-aided volumetry (CAV) scheme for quantifying pneumothorax in multidetector computed tomography (MDCT) images for pediatric patients and to investigate the imaging parameters that may affect its accuracy. MATERIALS AND METHODS/METHODS:Fifty-eight consecutive pediatric patients (mean age 12 ± 6 years) with pneumothorax who underwent MDCT for evaluation were collected retrospectively for this study. All cases were imaged by a 16- or 64-MDCT scanner with weight-based kilovoltage, low-dose tube current, 1.0-1.5 pitch, 0.6-5.0 mm slice thickness, and a B70f (sharp) or B31f (soft) reconstruction kernel. Sixty-three pneumothoraces ≥1 mL were visually identified in the left (n = 30) and right (n = 33) lungs. Each identified pneumothorax was contoured manually on an Amira workstation V4.1.1 (Mercury Computer Systems, Chelmsford, MA) by two radiologists in consensus. The computerized volumes of the pneumothoraces were determined by application of our CAV scheme. The accuracy of our automated CAV scheme was evaluated by comparison between computerized volumetry and manual volumetry, for the total volume of pneumothoraces in the left and right lungs. RESULTS:The mean difference between the computerized volumetry and the manual volumetry for all 63 pneumothoraces ≥1 mL was 8.2%. For pneumothoraces ≥10 mL, ≥50 mL, and ≥200 mL, the mean differences were 7.7% (n = 57), 7.3% (n = 33), and 6.4% (n = 13), respectively. The correlation coefficient was 0.99 between the computerized volume and the manual volume of pneumothoraces. Bland-Altman analysis showed that computerized volumetry has a mean difference of -5.1% compared to manual volumetry. For all pneumothoraces ≥10 mL, the mean differences for slice thickness ≤1.25 mm, = 1.5 mm, and = 5.0 mm were 6.1% (n = 28), 3.5% (n = 10), and 12.2% (n = 19), respectively. For the two reconstruction kernels, B70f and B31f, the mean differences were 6.3% (n = 42, B70f) and 11.7% (n = 15, B31f), respectively. CONCLUSION/CONCLUSIONS:Our automated CAV scheme provides an accurate measurement of pneumothorax volume in MDCT images of pediatric patients. For accurate volumetric quantification of pneumothorax in children in MDCT images by use of the automated CAV scheme, we recommended reconstruction parameters based on a slice thickness ≤1.5 mm and the reconstruction kernel B70f.
PMCID:3072076
PMID: 21216160
ISSN: 1878-4046
CID: 4137042