Try a new search

Format these results:

Searched for:

person:wrighs01

Total Results:

45


11beta-HSD1 inhibition ameliorates metabolic syndrome and prevents progression of atherosclerosis in mice

Hermanowski-Vosatka, Anne; Balkovec, James M; Cheng, Kang; Chen, Howard Y; Hernandez, Melba; Koo, Gloria C; Le Grand, Cheryl B; Li, Zhihua; Metzger, Joseph M; Mundt, Steven S; Noonan, Heather; Nunes, Christian N; Olson, Steven H; Pikounis, Bill; Ren, Ning; Robertson, Nancy; Schaeffer, James M; Shah, Kashmira; Springer, Martin S; Strack, Alison M; Strowski, Matthias; Wu, Kenneth; Wu, Tsueiju; Xiao, Jianying; Zhang, Bei B; Wright, Samuel D; Thieringer, Rolf
The enzyme 11beta-hydroxysteroid dehydrogenase (HSD) type 1 converts inactive cortisone into active cortisol in cells, thereby raising the effective glucocorticoid (GC) tone above serum levels. We report that pharmacologic inhibition of 11beta-HSD1 has a therapeutic effect in mouse models of metabolic syndrome. Administration of a selective, potent 11beta-HSD1 inhibitor lowered body weight, insulin, fasting glucose, triglycerides, and cholesterol in diet-induced obese mice and lowered fasting glucose, insulin, glucagon, triglycerides, and free fatty acids, as well as improved glucose tolerance, in a mouse model of type 2 diabetes. Most importantly, inhibition of 11beta-HSD1 slowed plaque progression in a murine model of atherosclerosis, the key clinical sequela of metabolic syndrome. Mice with a targeted deletion of apolipoprotein E exhibited 84% less accumulation of aortic total cholesterol, as well as lower serum cholesterol and triglycerides, when treated with an 11beta-HSD1 inhibitor. These data provide the first evidence that pharmacologic inhibition of intracellular GC activation can effectively treat atherosclerosis, the key clinical consequence of metabolic syndrome, in addition to its salutary effect on multiple aspects of the metabolic syndrome itself.
PMCID:2212859
PMID: 16103409
ISSN: 0022-1007
CID: 729312

Simvastatin reduces neointimal thickening in low-density lipoprotein receptor-deficient mice after experimental angioplasty without changing plasma lipids

Chen, Zhiping; Fukutomi, Tatsuya; Zago, Alexandre C; Ehlers, Raila; Detmers, Patricia A; Wright, Samuel D; Rogers, Campbell; Simon, Daniel I
BACKGROUND: Statins exert antiinflammatory and antiproliferative actions independent of cholesterol lowering. To determine whether these actions might affect neointimal formation, we investigated the effect of simvastatin on the response to experimental angioplasty in LDL receptor-deficient (LDLR-/-) mice, a model of hypercholesterolemia in which changes in plasma lipids are not observed in response to simvastatin. METHODS AND RESULTS: Carotid artery dilation (2.5 atm) and complete endothelial denudation were performed in male C57BL/6J LDLR-/- mice treated with low-dose (2 mg/kg) or high-dose (20 mg/kg) simvastatin or vehicle subcutaneously 72 hours before and then daily after injury. After 7 and 28 days, intimal and medial sizes were measured and the intima to media area ratio (I:M) was calculated. Total plasma cholesterol and triglyceride levels were similar in simvastatin- and vehicle-treated mice. Intimal thickening and I:M were reduced significantly by low- and high-dose simvastatin compared with vehicle alone. Simvastatin treatment was associated with reduced cellular proliferation (BrdU), leukocyte accumulation (CD45), and platelet-derived growth factor-induced phosphorylation of the survival factor Akt and increased apoptosis after injury. CONCLUSIONS: Simvastatin modulates vascular repair after injury in the absence of lipid-lowering effects. Although the mechanisms are not yet established, additional research may lead to new understanding of the actions of statins and novel therapeutic interventions for preventing restenosis.
PMID: 12093764
ISSN: 0009-7322
CID: 729422

Deficiency in sPLA(2) does not affect HDL levels or atherosclerosis in mice

Burton, Charlotte A; Patel, Sushma; Mundt, Steven; Hassing, Heide; Zhang, Donghui; Hermanowski-Vosatka, Anne; Wright, Samuel D; Chao, Yu-Sheng; Detmers, Patricia A; Sparrow, Carl P
Secretory non-pancreatic phospholipase A(2) (sPLA(2)) has been implicated in inflammation and has been found in human atherosclerotic lesions. To test the effect of sPLA(2) deficiency on atherosclerosis, C57BL/Ks mice (apoE(+/+) and PLA(2)(++) were bred with C57BL/6 apoE knockout mice which are sPLA(2)(--) due to a spontaneous mutation. Sibling pairs of mice (apoE(--)/sPLA(2)(++) and apoE(--)/sPLA(2)(--)) on high fat Western diets were dissected at 22 weeks. In vitro enzyme assays confirmed higher serum sPLA(2) activity in the sPLA(2)(++) compared to sPLA(2)(--) for both sexes, while sPLA(2)(--) males had slightly higher serum cholesterol and phospholipids. Analysis of lipoprotein profiles by FPLC showed no effect of sPLA(2) genotype on any measured parameters. Atherosclerosis was quantitated by assaying cholesterol in aortic extracts. Male sPLA(2) trended slightly higher than sPLA(2)(++) with no statistical significance. Female sPLA(2)(++) and sPLA(2)(--) mice showed no significant differences in any of the measured parameters. These results suggest that the endogenous mouse sPLA(2) gene does not significantly affect HDL or atherosclerosis in mice.
PMID: 12054745
ISSN: 0006-291x
CID: 729432

Toll-like receptor 2 (TLR2) mediates activation of stress-activated MAP kinase p38

Vasselon, Thierry; Hanlon, William A; Wright, Samuel D; Detmers, Patricia A
Early events in the response of cells to lipopolysaccharide (LPS) include activation of NF-kappaB and stress-activated MAP kinase p38. Recent studies have shown that the human Toll-like receptor 2 (TLR2) mediates activation of NF-kappaB in response to commercial preparations of LPS (comLPS), membrane lipoproteins, and Gram-positive bacterial products. Here, we show that expression of TLR2 in human embryonic kidney 293 cells enabled p38 phosphorylation in response to comLPS, a synthetic bacterial lipoprotein, and B. subtilis. Activation of p38 was confirmed by an in vitro kinase assay using ATF2 as substrate and by an assay measuring activation of the downstream effector of p38, MAP kinase-activated protein kinase in cells. Thus, TLR2 initiated the signaling pathway for p38 in response to bacterial products.
PMID: 11867688
ISSN: 0741-5400
CID: 729322

27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells

Fu, X; Menke, J G; Chen, Y; Zhou, G; MacNaul, K L; Wright, S D; Sparrow, C P; Lund, E G
The nuclear receptors liver X receptor alpha (LXRalpha) (NR1H3) and LXRbeta (NR1H2) are important regulators of genes involved in lipid metabolism, including ABCA1, ABCG1, and sterol regulatory element-binding protein-1c (SREBP-1c). Although it has been demonstrated that oxysterols are LXR ligands, little is known about the identity of the physiological activators of these receptors. Here we confirm earlier studies demonstrating a dose-dependent induction of ABCA1 and ABCG1 in human monocyte-derived macrophages by cholesterol loading. In addition, we show that formation of 27-hydroxycholesterol and cholestenoic acid, products of CYP27 action on cholesterol, is dependent on the dose of cholesterol used to load the cells. Other proposed LXR ligands, including 20(S)-hydroxycholesterol, 22(R)-hydroxycholesterol, and 24(S),25-epoxycholesterol, could not be detected under these conditions. A role for CYP27 in regulation of cholesterol-induced genes was demonstrated by the following findings. 1) Introduction of CYP27 into HEK-293 cells conferred an induction of ABCG1 and SREBP-1c; 2) upon cholesterol loading, CYP27-expressing cells induce these genes to a greater extent than in control cells; 3) in CYP27-deficient human skin fibroblasts, the induction of ABCA1 in response to cholesterol loading was ablated; and 4) in a coactivator association assay, 27-hydroxycholesterol functionally activated LXR. We conclude that 27-hydroxylation of cholesterol is an important pathway for LXR activation in response to cholesterol overload.
PMID: 11504730
ISSN: 0021-9258
CID: 729332

ApoE(-/-) mice develop atherosclerosis in the absence of complement component C5

Patel, S; Thelander, E M; Hernandez, M; Montenegro, J; Hassing, H; Burton, C; Mundt, S; Hermanowski-Vosatka, A; Wright, S D; Chao, Y S; Detmers, P A
Previous studies have suggested that the terminal complex of complement may contribute to the pathogenesis of atherosclerosis. C5b-9 complexes colocalize with the extracellular lipid in the aortic intima of hypercholesterolemic rabbits, and C6-deficient rabbits develop less atherosclerosis than controls. To test the role of complement in atherosclerosis in a different animal model, C5 deficient (C5def) mice were cross-bred with atherosclerosis susceptible apoE(-/-) mice, generating mice deficient in both apoE and C5 and control apoE(-/-) mice. Progeny were typed for C5 titer and serum cholesterol levels. Both male and female mice were fed a high fat diet from weaning until 22 weeks of age. At that time there were no significant differences in plasma cholesterol or triglycerides between apoE(-/-) control and apoE(-/-)/C5def groups. Morphometric analysis of the aortic root lesions gave mean (+/-SEM) lesion areas for male apoE(-/-) and apoE(-/-)/C5def mice of 468,176 +/- 21,982 and 375,182 +/- 53,089 microm(2), respectively (n = 10 each, P value = 0.123). In female apoE(-/-) mice (n = 5), the mean lesion area was 591,981 +/- 53,242 microm(2), compared to 618,578 +/- 83,457 microm(2) for female apoE(-/-)/C5def mice (n = 10) (P value = 0.835). Thus neither male nor female mice showed a significant change in lesion area when C5 was not present. In contrast to the case in the hypercholesterolemic rabbit, activation of the terminal complex of complement does not play a major role in the development of atherosclerosis in apoE(-/-) mice.
PMID: 11485323
ISSN: 0006-291x
CID: 729342

11 Beta-hydroxysteroid dehydrogenase type 1 is induced in human monocytes upon differentiation to macrophages

Thieringer, R; Le Grand, C B; Carbin, L; Cai, T Q; Wong, B; Wright, S D; Hermanowski-Vosatka, A
11beta-hydroxysteroid dehydrogenases (11beta-HSD) perform prereceptor metabolism of glucocorticoids through interconversion of the active glucocorticoid, cortisol, with inactive cortisone. Although the immunosuppressive and anti-inflammatory activities of glucocorticoids are well documented, the expression of 11beta-HSD enzymes in immune cells is not well understood. Here we demonstrate that 11beta-HSD1, which converts cortisone to cortisol, is expressed only upon differentiation of human monocytes to macrophages. 11beta-HSD1 expression is concomitant with the emergence of peroxisome proliferator activating receptor gamma, which was used as a surrogate marker of monocyte differentiation. The type 2 enzyme, 11beta-HSD2, which converts cortisol to cortisone, was not detectable in either monocytes or cultured macrophages. Incubation of monocytes with IL-4 or IL-13 induced 11beta-HSD1 activity by up to 10-fold. IFN-gamma, a known functional antagonist of IL-4 and IL-13, suppressed the induction of 11beta-HSD1 by these cytokines. THP-1 cells, a human macrophage-like cell line, expressed 11beta-HSD1 and low levels of 11beta-HSD2. The expression of 11beta-HSD1 in these cells is up-regulated 4-fold by LPS. In summary, we have shown strong expression of 11beta-HSD1 in cultured human macrophages and THP-1 cells. The presence of the enzyme in these cells suggests that it may play a role in regulating the immune function of these cells.
PMID: 11418628
ISSN: 0022-1767
CID: 729352

Statins suppress THP-1 cell migration and secretion of matrix metalloproteinase 9 by inhibiting geranylgeranylation

Wong, B; Lumma, W C; Smith, A M; Sisko, J T; Wright, S D; Cai, T Q
Macrophages secrete matrix metalloproteinase 9 (MMP-9), an enzyme that weakens the fibrous cap of atherosclerotic plaques, predisposing them to plaque rupture and subsequent ischemic events. Recent work indicates that statins strongly reduce the possibility of heart attack. Furthermore, these compounds appear to exert beneficial effects not only by lowering plasma low-density-lipoprotein cholesterol but also by directly affecting the artery wall. To evaluate whether statins influence the proinflammatory responses of monocytic cells, we studied their effects on the chemotactic migration and MMP-9 secretion of human monocytic cell line THP-1. Simvastatin dose dependently inhibited THP-1 cell migration mediated by monocyte chemoattractant protein 1, with a 50% inhibitory concentration of about 50 nM. It also inhibited bacterial lipopolysaccharide-stimulated secretion of MMP-9. The effects of simvastatin were completely reversed by mevalonate and its derivatives, farnesylpyrophosphate and geranylgeranyl pyrophosphate, but not by ubiquinone. Additional studies revealed similar but more profound inhibitory effects with L-839,867, a specific inhibitor of geranylgeranyl transferase. However, alpha-hydroxyfarnesyl phosphonic acid, an inhibitor of farnesyl transferase, had no effect. C3 exoenzyme, a specific inhibitor of the prenylated small signaling Rho proteins, mimicked the inhibitory effects of simvastatin and L-839,867. These data supported the role of geranylgeranylation in the migration and MMP-9 secretion of monocytes.
PMID: 11404382
ISSN: 0741-5400
CID: 729362

Production of matrix metalloproteinase-9 in CaCO-2 cells in response to inflammatory stimuli

Gan, X; Wong, B; Wright, S D; Cai, T Q
Matrix metalloproteinase-9 (MMP-9) may play an important role in the development of inflammatory bowel disease (IBD). However, the cellular source of MMP-9 in the inflamed mucosa of IBD remains unclear. Here we report that MMP-9 mRNA is expressed in CaCO-2 cells, an intestinal epithelial cell line, and that its expression is upregulated by inflammatory stimuli. Stimulation of CaCO-2 cells with interleukin-1beta (IL-1beta) or tumor necrosis factor-alpha (TNF-alpha) led to a dose-dependent increase in expression and secretion of MMP-9. In contrast, bacterial lipopolysaccharide (LPS) failed to induce expression or secretion of MMP-9, suggesting that an inflammatory reaction leading to cytokine release is a necessary step for the induction of MMP-9 release in intestinal epithelial cells. Additional studies show that induction of MMP-9 mRNA peaked at 16 h of IL-1beta stimulation, whereas expression of monocyte chemoattractant protein-1 (MCP-1) and IL-8 both peaked at 3 h of stimulation. Treatment of CaCO-2 cells with rosiglitazone, a peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist, significantly reduced secretion of MMP-9, indicating that agents that activate PPAR-gamma may have therapeutic use in patients with IBD.
PMID: 11244573
ISSN: 1079-9907
CID: 729372

Soluble CD14 mediates efflux of phospholipids from cells

Sugiyama, T; Wright, S D
Soluble CD14 (sCD14), a 55-kDa glycoprotein found in plasma, has been shown to act as a shuttle for bacterial LPS and phospholipids, transporting LPS and phospholipid monomers from LPS aggregates or liposomes to high density lipoprotein particles. sCD14 has also been shown to mediate the transport of LPS and phosphatidylinositol into cells. Here we show that sCD14 mediates not only the influx but also the efflux of cellular phospholipids. Addition of sCD14 enhanced efflux of cellular phospholipids labeled with [(3)H]palmitic acid, [(3)H]oleic acid, or [(3)H]choline chloride from differentiated THP-1 monocytic cells. Efflux was dependent on the concentration of sCD14 added and was essentially complete in 30 min. The role of membrane-bound CD14 (mCD14) in lipid efflux was assessed using matched pairs of cell lines that express or fail to express this protein. While efflux was very dependent on mCD14 in U373 cells, it was not dependent on mCD14 in Chinese hamster ovary cells, suggesting a role for additional cellular proteins in determining the pathway of phospholipid efflux. A deletion mutant of sCD14 lacking the LPS binding site had less ability to efflux phospholipids than intact sCD14, suggesting that this site is needed for CD14 to serve in phospholipid transport. [(3)H]Palmitate-labeled lipids released by sCD14 were precipitated with anti-CD14 then analyzed by HPLC. Phosphatidylcholine was the dominant phospholipid exported and bound to sCD14. These results demonstrate that sCD14 mediates efflux of phospholipids from cells and suggest that sCD14 contributes to phospholipid transport in blood.
PMID: 11145656
ISSN: 0022-1767
CID: 729382