Try a new search

Format these results:

Searched for:

person:wux01

in-biosketch:yes

Total Results:

177


Uromodulin (Tamm-Horsfall protein): guardian of urinary and systemic homeostasis

Micanovic, Radmila; LaFavers, Kaice; Garimella, Pranav S; Wu, Xue-Ru; El-Achkar, Tarek M
Biology has taught us that a protein as abundantly made and conserved among species as Tamm-Horsfall protein (THP or uromodulin) cannot just be a waste product serving no particular purpose. However, for many researchers, THP is merely a nuisance during urine proteome profiling or exosome purification and for clinicians an enigmatic entity without clear disease implications. Thanks to recent human genetic and correlative studies and animal modeling, we now have a renewed appreciation of this highly prevalent protein in not only guarding urinary homeostasis, but also serving as a critical mediator in systemic inter-organ signaling. Beyond a mere barrier that lines the tubules, or a surrogate for nephron mass, mounting evidence suggests that THP is a multifunctional protein critical for modulating renal ion channel activity, salt/water balance, renal and systemic inflammatory response, intertubular communication, mineral crystallization and bacterial adhesion. Indeed, mutations in THP cause a group of inherited kidney diseases, and altered THP expression is associated with increased risks of urinary tract infection, kidney stone, hypertension, hyperuricemia and acute and chronic kidney diseases. Despite the recent surge of information surrounding THP's physiological functions and disease involvement, our knowledge remains incomplete regarding how THP is normally regulated by external and intrinsic factors, how precisely THP deficiency leads to urinary and systemic pathophysiology and in what clinical settings THP can be used as a theranostic biomarker and a target for modulation to improve patient outcomes.
PMID: 30649494
ISSN: 1460-2385
CID: 3595332

Genetic modeling of bladder cancer in the post-genome era. [Meeting Abstract]

Wu, Xue-Ru
ISI:000558688000015
ISSN: 1078-0432
CID: 4573672

Downregulation of miR-200c stabilizes XIAP mRNA and contributes to invasion and lung metastasis of bladder cancer

Jin, Honglei; Xue, Lei; Mo, Lan; Zhang, Dongyun; Guo, Xirui; Xu, Jiheng; Li, Jingxia; Peng, Minggang; Zhao, Xuewei; Zhong, Minghao; Xu, Dazhong; Wu, Xue-Ru; Huang, Haishan; Huang, Chuanshu
Our previous studies have demonstrated that XIAP promotes bladder cancer metastasis through upregulating RhoGDIβ/MMP-2 pathway. However, the molecular mechanisms leading to the XIAP upregulation was unclear. In current studies, we found that XIAP was overexpressed in human high grade BCs, high metastatic human BCs, and in mouse invasive BCs. Mechanistic studies indicated that XIAP overexpression in the highly metastatic T24T cells was due to increased mRNA stability of XIAP that was mediated by downregulated miR-200c. Moreover, the downregulated miR-200c was due to CREB inactivation, while miR-200c downregulation reduced its binding to the 3'-UTR region of XIAP mRNA. Collectively, our results demonstrate the molecular basis leading to XIAP overexpression and its crucial role in BC invasion.
PMID: 31240993
ISSN: 1933-6926
CID: 3963692

Electronic-cigarette smoke induces lung adenocarcinoma and bladder urothelial hyperplasia in mice

Tang, Moon-Shong; Wu, Xue-Ru; Lee, Hyun-Wook; Xia, Yong; Deng, Fang-Ming; Moreira, Andre L; Chen, Lung-Chi; Huang, William C; Lepor, Herbert
Electronic-cigarettes (E-cigs) are marketed as a safe alternative to tobacco to deliver the stimulant nicotine, and their use is gaining in popularity, particularly among the younger population. We recently showed that mice exposed to short-term (12 wk) E-cig smoke (ECS) sustained extensive DNA damage in lungs, heart, and bladder mucosa and diminished DNA repair in lungs. Nicotine and its nitrosation product, nicotine-derived nitrosamine ketone, cause the same deleterious effects in human lung epithelial and bladder urothelial cells. These findings raise the possibility that ECS is a lung and bladder carcinogen in addition to nicotine. Given the fact that E-cig use has become popular in the past decade, epidemiological data on the relationship between ECS and human cancer may not be known for a decade to come. In this study, the carcinogenicity of ECS was tested in mice. We found that mice exposed to ECS for 54 wk developed lung adenocarcinomas (9 of 40 mice, 22.5%) and bladder urothelial hyperplasia (23 of 40 mice, 57.5%). These lesions were extremely rare in mice exposed to vehicle control or filtered air. Current observations that ECS induces lung adenocarcinomas and bladder urothelial hyperplasia, combined with our previous findings that ECS induces DNA damage in the lungs and bladder and inhibits DNA repair in lung tissues, implicate ECS as a lung and potential bladder carcinogen in mice. While it is well established that tobacco smoke poses a huge threat to human health, whether ECS poses any threat to humans is not yet known and warrants careful investigation.
PMID: 31591243
ISSN: 1091-6490
CID: 4129452

Mitochondrial lipid droplet formation as a detoxification mechanism to sequester and degrade excessive urothelial membranes

Liao, Yi; Tham, Daniel K L; Liang, Feng-Xia; Chang, Jennifer; Wei, Yuan; Reddy, Sudhir Putty; Sall, Joseph; Ren, Sarah J; Chicote, Javier U; Arnold, Lora L; Hu, Chih-Chi Andrew; Romih, Rok; Andrade, Leonardo R; Rindler, Michael J; Cohen, Samuel M; DeSalle, Rob; Garcia-España, Antonio; Ding, Mingxiao; Wu, Xue-Ru; Sun, Tung-Tien
The apical surface of the terminally differentiated mammalian urothelial umbrella cell is mechanically stable and highly impermeable, in part due its coverage by urothelial plaques consisting of 2D-crystals of uroplakin particles. The mechanism for regulating the uroplakin/plaque level is unclear. We found that genetic ablation of the highly tissue-specific sorting nexin Snx31, which localizes to plaques lining the multivesicular bodies (MVBs) in urothelial umbrella cells, abolishes MVBs suggesting that Snx31 plays a role in stabilizing the MVB-associated plaques by allowing them to achieve a greater curvature. Strikingly, Snx31 ablation also induces a massive accumulation of uroplakin-containing mitochondria-derived lipid droplets (LDs), which mediate uroplakin degradation via autophagy/lipophagy, leading to the loss of apical and fusiform vesicle plaques. These results suggest that MVBs play an active role in suppressing the excessive/wasteful endocytic degradation of uroplakins. Failure of this suppression mechanism triggers the formation of mitochondrial LDs so that excessive uroplakin membranes can be sequestered and degraded. Since mitochondrial LD formation, which occurs at a low level in normal urothelium, can also be induced by disturbance in uroplakin polymerization due to individual uroplakin-knockout and by arsenite, a bladder carcinogen, this pathway may represent an inducible, versatile urothelial detoxification mechanism. [Media: see text] [Media: see text] [Media: see text].
PMID: 31577526
ISSN: 1939-4586
CID: 4116262

Circulating uromodulin inhibits systemic oxidative stress by inactivating the TRPM2 channel

LaFavers, Kaice A; Macedo, Etienne; Garimella, Pranav S; Lima, Camila; Khan, Shehnaz; Myslinski, Jered; McClintick, Jeanette; Witzmann, Frank A; Winfree, Seth; Phillips, Carrie L; Hato, Takashi; Dagher, Pierre C; Wu, Xue-Ru; El-Achkar, Tarek M; Micanovic, Radmila
High serum concentrations of kidney-derived protein uromodulin [Tamm-Horsfall protein (THP)] have recently been shown to be independently associated with low mortality in both older adults and cardiac patients, but the underlying mechanism remains unclear. Here, we show that THP inhibits the generation of reactive oxygen species (ROS) both in the kidney and systemically. Consistent with this experimental data, the concentration of circulating THP in patients with surgery-induced acute kidney injury (AKI) correlated with systemic oxidative damage. THP in the serum dropped after AKI and was associated with an increase in systemic ROS. The increase in oxidant injury correlated with postsurgical mortality and need for dialysis. Mechanistically, THP inhibited the activation of the transient receptor potential cation channel, subfamily M, member 2 (TRPM2) channel. Furthermore, inhibition of TRPM2 in vivo in a mouse model mitigated the systemic increase in ROS during AKI and THP deficiency. Our results suggest that THP is a key regulator of systemic oxidative stress by suppressing TRPM2 activity, and our findings might help explain how circulating THP deficiency is linked with poor outcomes and increased mortality.
PMID: 31578243
ISSN: 1946-6242
CID: 4116322

ATG7 Promotes Bladder Cancer Invasion via Autophagy-Mediated Increased ARHGDIB mRNA Stability

Zhu, Junlan; Tian, Zhongxian; Li, Yang; Hua, Xiaohui; Zhang, Dongyun; Li, Jingxia; Jin, Honglei; Xu, Jiheng; Chen, Wei; Niu, Beifang; Wu, Xue-Ru; Comincini, Sergio; Huang, Haishan; Huang, Chuanshu
Since invasive bladder cancer (BC) can progress to life threatening metastases, understanding the molecular mechanisms underlying BC invasion is crucial for potentially decreasing the mortality of this disease. Herein, it is discovered that autophagy-related gene 7 (ATG7) is remarkably overexpressed in human invasive BC tissues. The knockdown of ATG7 in human BC cells dramatically inhibits cancer cell invasion, revealing that ATG7 is a key player in regulating BC invasion. Mechanistic studies indicate that MIR190A is responsible for ATG7 mRNA stability and protein overexpression by directly binding to ATG7 mRNA 3'-UTR. Furthermore, ATG7-mediated autophagy promotes HNRNPD (ARE/poly(U)-binding/degradation factor 1) protein degradation, and in turn reduces HNRNPD interaction with ARHGDIB mRNA, resulting in the elevation of ARHGDIB mRNA stability, and subsequently leading to BC cell invasion. The identification of the MIR190A/ATG7 autophagic mechanism regulation of HNRNPD/ARHGDIB expression provides an important insight into understanding the nature of BC invasion and suggests that autophagy may represent a potential therapeutic strategy for the treatment of human BC patients.
PMCID:6468970
PMID: 31016112
ISSN: 2198-3844
CID: 3860032

The RING domain in the anti-apoptotic protein XIAP stabilizes c-Myc protein and preserves anchorage-independent growth of bladder cancer cells

Jiang, Guosong; Huang, Chao; Liao, Xin; Li, Jingxia; Wu, Xue-Ru; Zeng, Fuqing; Huang, Chuanshu
X-linked inhibitor of apoptosis protein (XIAP) suppresses apoptosis and plays key roles in the development, growth, migration, and invasion of cancer cells. Therefore, XIAP has recently attracted much attention as a potential antineoplastic therapeutic target, requiring elucidation of the molecular mechanisms underlying its biological activities. Here, using shRNA-mediated gene silencing, immunoblotting, quantitative RT-PCR, anchorage-independent growth assay, and invasive assay, we found that XIAP's RING domain, but not its BIR domain, is crucial for XIAP-mediated up-regulation of c-Myc protein expression in human bladder cancer (BC) cells. Mechanistically, we observed that the RING domain stabilizes c-Myc by inhibiting its phosphorylation at Thr-58, and that this inhibition is due to activated ERK1/2-mediated phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser-9. Functional studies further revealed that c-Myc protein promotes anchorage-independent growth and invasion stimulated by the XIAP RING domain in human BC cells. Collectively, the findings in our study uncover that the RING domain of XIAP supports c-Myc protein stability, providing insight into the molecular mechanism and role of c-Myc overexpression in cancer progression. Our observations support the notion of targeting XIAP's RING domain and c-Myc in cancer therapy.
PMID: 30819803
ISSN: 1083-351x
CID: 3698652

MEG3, as a Competing Endogenous RNA, Binds with miR-27a to Promote PHLPP2 Protein Translation and Impairs Bladder Cancer Invasion

Huang, Chao; Liao, Xin; Jin, Honglei; Xie, Fei; Zheng, Fuxing; Li, Jingxia; Zhou, Chenfan; Jiang, Guosong; Wu, Xue-Ru; Huang, Chuanshu
Muscle-invasive and metastatic bladder cancer have an extremely poor 5-year survival rate of 5%. In comparison, all other bladder cancers (BCs) have a 5-year survival rate of 77%. This striking contrast indicates that one of the therapeutic kernels for bladder cancer is to elucidate the molecular mechanisms underlying its invasiveness and metastasis. In the current study, we demonstrated that maternally expressed gene 3 (MEG3) is significantly downregulated in human invasive bladder cancers in comparison to non-invasive bladder cancers, and that ectopic expression of MEG3 dramatically inhibits the invasiveness of human bladder cancer cells. Consistently, ectopic expression of MEG3 also attenuates metastatic ability of T24T cells, a cell line derived from T24 cells, in the lungs of nude mice. Our mechanistic studies reveal that MEG3, as a ceRNA, inhibits the invasiveness of human bladder cancer cells via negative regulation of c-Myc by competing with PHLPP2 mRNA for miR-27a. These findings not only provide a novel insight into understanding the mechanisms behind the MEG3 inhibition of bladder cancer cell invasion, but also reveal the potential for use of MEG3 as a tool for the prevention and therapy of invasive bladder cancer.
PMID: 30826633
ISSN: 2162-2531
CID: 3723882

Maintenance of the bladder cancer precursor urothelial hyperplasia requires FOXA1 and persistent expression of oncogenic HRAS

Yee, Christopher H; Zheng, Zongyu; Shuman, Lauren; Yamashita, Hironobu; Warrick, Joshua I; Wu, Xue-Ru; Raman, Jay D; DeGraff, David J
Tumorigenesis requires accumulation of genetic and epigenetic alterations, some of which drive tumor initiation. "Oncogene addiction" describes the phenomenon that (1) well-established cancers are dependent on one mutated oncogene or pathway for the maintenance of a malignant phenotype and that (2) withdrawal of the single oncogenic event leads to growth arrest and/or cancer regression. While oncogene addiction has been experimentally validated in advanced tumor models, its role in tumor precursors has not been investigated. We utilized the requirement of Forkhead box A1 (Foxa1) for transcriptional activation of the Upk2-promoter to temporally control the expression of Upk2-HRAS* oncogene, an inducer of urothelial hyperplasia in transgenic mice. Inducible homozygous knockout of Foxa1 in Upk2-HRAS*/UBC-CreERT2/Foxa1loxp/loxp mice results in reduced HRAS* levels. This led to a marked reduction of urothelial proliferation as evidenced by urothelial thinning, degenerative changes such as intracellular vacuole formation, and reduced Ki67 expression. Reduced proliferation did not affect basal, Krt14-positive cells, supporting the fact that Foxa1-regulated Upk2-HRAS* expression occurs primarily in supra-basal cells. Our results indicate that maintenance of urothelial hyperplasia in Upk2-HRAS* mice depends on continuous expression of Foxa1 and activated HRAS, and that mutated receptor tyrosine kinases, FOXA1 and/or other downstream effectors may mediate oncogene addiction in urothelial hyperplasia.
PMCID:6342925
PMID: 30670749
ISSN: 2045-2322
CID: 3609952