Try a new search

Format these results:

Searched for:

person:xuy02

in-biosketch:yes

Total Results:

46


Plasmalogen loss caused by remodeling deficiency in mitochondria

Kimura, Tomohiro; Kimura, Atsuko K; Ren, Mindong; Monteiro, Vernon; Xu, Yang; Berno, Bob; Schlame, Michael; Epand, Richard M
Lipid homeostasis is crucial in human health. Barth syndrome (BTHS), a life-threatening disease typically diagnosed with cardiomyopathy and neutropenia, is caused by mutations in the mitochondrial transacylase tafazzin. By high-resolution 31P nuclear magnetic resonance (NMR) with cryoprobe technology, recently we found a dramatic loss of choline plasmalogen in the tafazzin-knockdown (TAZ-KD) mouse heart, besides observing characteristic cardiolipin (CL) alterations in BTHS. In inner mitochondrial membrane where tafazzin locates, CL and diacyl phosphatidylethanolamine are known to be essential via lipid-protein interactions reflecting their cone shape for integrity of respiratory chain supercomplexes and cristae ultrastructure. Here, we investigate the TAZ-KD brain, liver, kidney, and lymphoblast from patients compared with controls. We identified common yet markedly cell type-dependent losses of ethanolamine plasmalogen as the dominant plasmalogen class therein. Tafazzin function thus critically relates to homeostasis of plasmalogen, which in the ethanolamine class has conceivably analogous and more potent molecular functions in mitochondria than diacyl phosphatidylethanolamine. The present discussion of a loss of plasmalogen-protein interaction applies to other diseases with mitochondrial plasmalogen loss and aberrant forms of this organelle, including Alzheimer's disease.
PMID: 31434794
ISSN: 2575-1077
CID: 4046892

Assembly of the complexes of oxidative phosphorylation triggers the remodeling of cardiolipin

Xu, Yang; Anjaneyulu, Murari; Donelian, Alec; Yu, Wenxi; Greenberg, Miriam L; Ren, Mindong; Owusu-Ansah, Edward; Schlame, Michael
Cardiolipin (CL) is a mitochondrial phospholipid with a very specific and functionally important fatty acid composition, generated by tafazzin. However, in vitro tafazzin catalyzes a promiscuous acyl exchange that acquires specificity only in response to perturbations of the physical state of lipids. To identify the process that imposes acyl specificity onto CL remodeling in vivo, we analyzed a series of deletions and knockdowns in Saccharomyces cerevisiae and Drosophila melanogaster, including carriers, membrane homeostasis proteins, fission-fusion proteins, cristae-shape controlling and MICOS proteins, and the complexes I-V. Among those, only the complexes of oxidative phosphorylation (OXPHOS) affected the CL composition. Rather than any specific complex, it was the global impairment of the OXPHOS system that altered CL and at the same time shortened its half-life. The knockdown of OXPHOS expression had the same effect on CL as the knockdown of tafazzin in Drosophila flight muscles, including a change in CL composition and the accumulation of monolyso-CL. Thus, the assembly of OXPHOS complexes induces CL remodeling, which, in turn, leads to CL stabilization. We hypothesize that protein crowding in the OXPHOS system imposes packing stress on the lipid bilayer, which is relieved by CL remodeling to form tightly packed lipid-protein complexes.
PMID: 31110016
ISSN: 1091-6490
CID: 3920362

Extramitochondrial cardiolipin suggests a novel function of mitochondria in spermatogenesis

Ren, Mindong; Xu, Yang; Erdjument-Bromage, Hediye; Donelian, Alec; Phoon, Colin K L; Terada, Naohiro; Strathdee, Douglas; Neubert, Thomas A; Schlame, Michael
Mitochondria contain cardiolipin (CL), an organelle-specific phospholipid that carries four fatty acids with a strong preference for unsaturated chains. Unsaturation is essential for the stability and for the function of mitochondrial CL. Surprisingly, we found tetrapalmitoyl-CL (TPCL), a fully saturated species, in the testes of humans and mice. TPCL was absent from other mouse tissues but was the most abundant CL species in testicular germ cells. Most intriguingly, TPCL was not localized in mitochondria but was in other cellular membranes even though mitochondrial CL was the substrate from which TPCL was synthesized. During spermiogenesis, TPCL became associated with the acrosome, a sperm-specific organelle, along with a subset of authentic mitochondrial proteins, including Ant4, Suox, and Spata18. Our data suggest that mitochondria-derived membranes are assembled into the acrosome, challenging the concept that this organelle is strictly derived from the Golgi apparatus and revealing a novel function of mitochondria.
PMID: 30914420
ISSN: 1540-8140
CID: 3777022

Pathological Oxidation of PTPN12 Underlies ABL1 Phosphorylation in Hereditary Leiomyomatosis and Renal Cell Carcinoma

Xu, Yang; Taylor, Paul; Andrade, Joshua; Ueberheide, Beatrix; Shuch, Brian; Glazer, Peter M; Bindra, Ranjit S; Moran, Michael F; Linehan, W Marston; Neel, Benjamin G
Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is an inherited cancer syndrome associated with a highly aggressive form of type 2 papillary renal cell carcinoma (PRCC). Germline inactivating alterations in fumarate hydratase (FH) cause HLRCC and result in elevated levels of reactive oxygen species (ROS). Recent work indicates that FH-/- PRCC cells have increased activation of ABL1, which promotes tumor growth, but how ABL1 is activated remains unclear. Given that oxidation can regulate protein-tyrosine phosphatase (PTP) catalytic activity, inactivation of an ABL-directed PTP by ROS might account for ABL1 activation in this malignancy. Our group previously developed "q-oxPTPome", a method that globally monitors the oxidation of classical PTPs. In this study, we present a refined q-oxPTPome, increasing its sensitivity by >10X. Applying q-oxPTPome to FH-deficient cell models showed that multiple PTPs were either highly oxidized (including PTPN12) or overexpressed. Highly oxidized PTP were those with relatively high sensitivity to exogenous H2O2. Most PTP oxidation in FH-deficient cells was reversible, although nearly 40% of PTPN13 was irreversibly oxidized to the sulfonic acid state. Using substrate-trapping mutants, we mapped PTPs to their putative substrates and found that only PTPN12 could target ABL1. Furthermore, knockdown experiments identified PTPN12 as the major ABL1 phosphatase, and overexpression of PTPN12 inhibited ABL1 phosphorylation and HLRCC cell growth. These results show that ROS-induced oxidation of PTPN12 accounts for ABL1 phosphorylation in HLRCC-associated PRCC, revealing a novel mechanism for inactivating a tumor suppressor gene product and establishing a direct link between pathological PTP oxidation and neoplastic disease.
PMID: 30297534
ISSN: 1538-7445
CID: 3334882

BigMaC: Reactive Network-Wide Policy Caching for SDN Policy Enforcement

Yan, Bo; Xu, Yang; Chao, H. Jonathan
Enforcing network policies is critical for service deployments over software-defined networks (SDN). Most existing studies suggest proactively compiling policies into flow entries in the data plane and updating the installed entries when necessary. With a growing amount of applications, taking a proactive approach may overflow underlying switch memory. Meanwhile, certain policies can be frequently updated. Such updates may propagate across configurations in the network, leading to a long time for correctness validation. To improve both the scalability and the flexibility of SDN policy enforcement, we advocate reactively deploying network policies in the data plane. To this end, we propose a network-wide policy enforcement framework named BigMaC. BigMaC advertises a neat policy model for network managers to specify various network policies as rules. It then caches the rules as flow entries in the switches reactively on demand. One major challenge for the BigMaC design is to guarantee the consistency of defined policies and cached entries in the network. To maintain consistency with efficient table usage and simple updates, we group rules into buckets and perform rule caching in the unit of buckets. With trace-driven simulations, we verify that BigMaC can significantly save table space and reduce update complexity compared to prior proposals.
ISI:000453531800009
ISSN: 0733-8716
CID: 3562312

Substantial Decrease in Plasmalogen in the Heart Associated with Tafazzin Deficiency

Kimura, Tomohiro; Kimura, Atsuko K; Ren, Mindong; Berno, Bob; Xu, Yang; Schlame, Michael; Epand, Richard M
Tafazzin is the mitochondrial enzyme that catalyzes transacylation between a phospholipid and a lysophospholipid in remodeling. Mutations in tafazzin cause Barth syndrome, a potentially life-threatening disease with the major symptom being cardiomyopathy. In the tafazzin-deficient heart, cardiolipin (CL) acyl chains become abnormally heterogeneous unlike those in the normal heart with a single dominant linoleoyl species, tetralinoleoyl CL. In addition, the amount of CL decreases and monolysocardiolipin (MLCL) accumulates. Here we determine using high-resolution 31P nuclear magnetic resonance with cryoprobe technology the fundamental phospholipid composition, including the major but oxidation-labile plasmalogens, in the tafazzin-knockdown (TAZ-KD) mouse heart as a model of Barth syndrome. In addition to confirming a lower level of CL (6.4 ± 0.1 → 2.0 ± 0.4 mol % of the total phospholipid) and accumulation of MLCL (not detected → 3.3 ± 0.5 mol %) in the TAZ-KD, we found a substantial reduction in the level of plasmenylcholine (30.8 ± 2.8 → 18.1 ± 3.1 mol %), the most abundant phospholipid in the control wild type. A quantitative Western blot revealed that while the level of peroxisomes, where early steps of plasmalogen synthesis take place, was normal in the TAZ-KD model, expression of Far1 as a rate-determining enzyme in plasmalogen synthesis was dramatically upregulated by 8.3 (±1.6)-fold to accelerate the synthesis in response to the reduced level of plasmalogen. We confirmed lyso-plasmenylcholine or plasmenylcholine is a substrate of purified tafazzin for transacylation with CL or MLCL, respectively. Our results suggest that plasmenylcholine, abundant in linoleoyl species, is important in remodeling CL in the heart. Tafazzin deficiency thus has a major impact on the cardiac plasmenylcholine level and thereby its functions.
PMCID:5893435
PMID: 29557170
ISSN: 1520-4995
CID: 3044482

The Basis for Acyl Specificity in the Tafazzin Reaction

Schlame, Michael; Xu, Yang; Ren, Mindong
Tafazzin is a mitochondrial enzyme that transfers fatty acids from phospholipids to lysophospholipids. Mutations in tafazzin cause abnormal molecular species of cardiolipin and the clinical phenotype of Barth syndrome. However, the mechanism by which tafazzin creates acyl specificity has been controversial. We have shown that the lipid phase state can produce acyl specificity in the tafazzin reaction but others have reported that tafazzin itself carries enzymatic specificity. To resolve this issue, we replicated and expanded the controversial experiments, i.e. the transfer of different acyl groups from phosphatidylcholine to monolyso-cardiolipin by yeast tafazzin. Our data show that this reaction requires the presence of detergent and does not take place in liposomes but in mixed micelles. In order to separate thermodynamic (lipid-dependent) from kinetic (enzyme-dependent) parameters, we followed the accumulation of cardiolipin during the reaction from the initial state to the equilibrium state. The transacylation rates of different acyl groups varied over 2 orders of magnitude and correlated tightly with the concentration of cardiolipin in the equilibrium state (lipid-dependent parameter). In contrast, the rates by which different transacylations approached the equilibrium state were very similar (enzyme-dependent parameter). Furthermore, we found that tafazzin catalyzes the remodeling of cardiolipin by combinations of forward and reverse transacylations, essentially creating an equilibrium distribution of acyl groups. These data strongly support the idea that the acyl specificity of the tafazzin reaction results from the physical properties of lipids.
PMCID:5392692
PMID: 28202545
ISSN: 1083-351x
CID: 2449242

A Global Analysis of the Receptor Tyrosine Kinase-Protein Phosphatase Interactome

Yao, Zhong; Darowski, Katelyn; St-Denis, Nicole; Wong, Victoria; Offensperger, Fabian; Villedieu, Annabel; Amin, Shahreen; Malty, Ramy; Aoki, Hiroyuki; Guo, Hongbo; Xu, Yang; Iorio, Caterina; Kotlyar, Max; Emili, Andrew; Jurisica, Igor; Neel, Benjamin G; Babu, Mohan; Gingras, Anne-Claude; Stagljar, Igor
Receptor tyrosine kinases (RTKs) and protein phosphatases comprise protein families that play crucial roles in cell signaling. We used two protein-protein interaction (PPI) approaches, the membrane yeast two-hybrid (MYTH) and the mammalian membrane two-hybrid (MaMTH), to map the PPIs between human RTKs and phosphatases. The resulting RTK-phosphatase interactome reveals a considerable number of previously unidentified interactions and suggests specific roles for different phosphatase families. Additionally, the differential PPIs of some protein tyrosine phosphatases (PTPs) and their mutants suggest diverse mechanisms of these PTPs in the regulation of RTK signaling. We further found that PTPRH and PTPRB directly dephosphorylate EGFR and repress its downstream signaling. By contrast, PTPRA plays a dual role in EGFR signaling: besides facilitating EGFR dephosphorylation, it enhances downstream ERK signaling by activating SRC. This comprehensive RTK-phosphatase interactome study provides a broad and deep view of RTK signaling.
PMCID:5663465
PMID: 28065597
ISSN: 1097-4164
CID: 2506992

Loss of protein association causes cardiolipin degradation in Barth syndrome

Xu, Yang; Phoon, Colin K L; Berno, Bob; D'Souza, Kenneth; Hoedt, Esthelle; Zhang, Guoan; Neubert, Thomas A; Epand, Richard M; Ren, Mindong; Schlame, Michael
Cardiolipin is a specific mitochondrial phospholipid that has a high affinity for proteins and that stabilizes the assembly of supercomplexes involved in oxidative phosphorylation. We found that sequestration of cardiolipin in protein complexes is critical to protect it from degradation. The turnover of cardiolipin is slower by almost an order of magnitude than the turnover of other phospholipids. However, in subjects with Barth syndrome, cardiolipin is rapidly degraded via the intermediate monolyso-cardiolipin. Treatments that induce supercomplex assembly decrease the turnover of cardiolipin and the concentration of monolyso-cardiolipin, whereas dissociation of supercomplexes has the opposite effect. Our data suggest that cardiolipin is uniquely protected from normal lipid turnover by its association with proteins, but this association is compromised in subjects with Barth syndrome, leading cardiolipin to become unstable, which in turn causes the accumulation of monolyso-cardiolipin.
PMCID:4955704
PMID: 27348092
ISSN: 1552-4469
CID: 2166952

Biochemical Classification of Disease-associated Mutants of RAS-like Protein Expressed in Many Tissues (RIT1)

Fang, Zhenhao; Marshall, Christopher B; Yin, Jiani C; Mazhab-Jafari, Mohammad T; Gasmi-Seabrook, Geneviève M C; Smith, Matthew J; Nishikawa, Tadateru; Xu, Yang; Neel, Benjamin G; Ikura, Mitsuhiko
RAS-like protein expressed in many tissues 1 (RIT1) is a disease-associated RAS subfamily small guanosine triphosphatase (GTPase). Recent studies revealed that germ-line and somatic RIT1 mutations can cause Noonan syndrome (NS), and drive proliferation of lung adenocarcinomas, respectively, akin to RAS mutations in these diseases. However, the locations of these RIT1 mutations differ significantly from those found in RAS, and do not affect the three mutational "hot spots" of RAS. Moreover, few studies have characterized the GTPase cycle of RIT1 and its disease-associated mutants. Here we developed a real-time NMR-based GTPase assay for RIT1 and investigated the effect of disease-associated mutations on GTPase cycle. RIT1 exhibits an intrinsic GTP hydrolysis rate similar to that of H-RAS, but its intrinsic nucleotide exchange rate is ∼4-fold faster, likely as a result of divergent residues near the nucleotide binding site. All of the disease-associated mutations investigated increased the GTP-loaded, activated state of RIT1 in vitro, but they could be classified into two groups with different intrinsic GTPase properties. The S35T, A57G, and Y89H mutants exhibited more rapid nucleotide exchange, whereas F82V and T83P impaired GTP hydrolysis. A RAS-binding domain pulldown assay indicated that RIT1 A57G and Y89H were highly activated in HEK293T cells, whereas T83P and F82V exhibited more modest activation. All five mutations are associated with NS, whereas two (A57G and F82V) have also been identified in urinary tract cancers and myeloid malignancies. Characterization of the effects on the GTPase cycle of RIT1 disease-associated mutations should enable better understanding of their role in disease processes.
PMCID:4957048
PMID: 27226556
ISSN: 1083-351x
CID: 3104082