Try a new search

Format these results:

Searched for:

name:Boeke

school:SOM

Total Results:

480


Proceedings of the inaugural Dark Genome Symposium: November 2022

Boeke, Jef D; Burns, Kathleen H; Chiappinelli, Katherine B; Classon, Marie; Coffin, John M; DeCarvalho, Daniel D; Dukes, Joseph D; Greenbaum, Benjamin; Kassiotis, George; Knutson, Sarah K; Levine, Arnold J; Nath, Avindra; Papa, Sophie; Rios, Daniel; Sedivy, John; Ting, David T
In November 2022 the first Dark Genome Symposium was held in Boston, USA. The meeting was hosted by Rome Therapeutics and Enara Bio, two biotechnology companies working on translating our growing understanding of this vast genetic landscape into therapies for human disease. The spirit and ambition of the meeting was one of shared knowledge, looking to strengthen the network of researchers engaged in the field. The meeting opened with a welcome from Rosana Kapeller and Kevin Pojasek followed by a first session of field defining talks from key academics in the space. A series of panels, bringing together academia and industry views, were then convened covering a wide range of pertinent topics. Finally, Richard Young and David Ting gave their views on the future direction and promise for patient impact inherent in the growing understanding of the Dark Genome.
PMCID:10664479
PMID: 37990347
ISSN: 1759-8753
CID: 5608402

Parallel laboratory evolution and rational debugging reveal genomic plasticity to S. cerevisiae synthetic chromosome XIV defects

Williams, Thomas C; Kroukamp, Heinrich; Xu, Xin; Wightman, Elizabeth L I; Llorente, Briardo; Borneman, Anthony R; Carpenter, Alexander C; Van Wyk, Niel; Meier, Felix; Collier, Thomas R V; Espinosa, Monica I; Daniel, Elizabeth L; Walker, Roy S K; Cai, Yizhi; Nevalainen, Helena K M; Curach, Natalie C; Deveson, Ira W; Mercer, Timothy R; Johnson, Daniel L; Mitchell, Leslie A; Bader, Joel S; Stracquadanio, Giovanni; Boeke, Jef D; Goold, Hugh D; Pretorius, Isak S; Paulsen, Ian T
Synthetic chromosome engineering is a complex process due to the need to identify and repair growth defects and deal with combinatorial gene essentiality when rearranging chromosomes. To alleviate these issues, we have demonstrated novel approaches for repairing and rearranging synthetic Saccharomyces cerevisiae genomes. We have designed, constructed, and restored wild-type fitness to a synthetic 753,096-bp version of S. cerevisiae chromosome XIV as part of the Synthetic Yeast Genome project. In parallel to the use of rational engineering approaches to restore wild-type fitness, we used adaptive laboratory evolution to generate a general growth-defect-suppressor rearrangement in the form of increased TAR1 copy number. We also extended the utility of the synthetic chromosome recombination and modification by loxPsym-mediated evolution (SCRaMbLE) system by engineering synthetic-wild-type tetraploid hybrid strains that buffer against essential gene loss, highlighting the plasticity of the S. cerevisiae genome in the presence of rational and non-rational modifications.
PMCID:10667330
PMID: 38020977
ISSN: 2666-979x
CID: 5617112

Consequences of a telomerase-related fitness defect and chromosome substitution technology in yeast synIX strains

McCulloch, Laura H; Sambasivam, Vijayan; Hughes, Amanda L; Annaluru, Narayana; Ramalingam, Sivaprakash; Fanfani, Viola; Lobzaev, Evgenii; Mitchell, Leslie A; Cai, Jitong; ,; Jiang, Hua; LaCava, John; Taylor, Martin S; Bishai, William R; Stracquadanio, Giovanni; Steinmetz, Lars M; Bader, Joel S; Zhang, Weimin; Boeke, Jef D; Chandrasegaran, Srinivasan
We describe the complete synthesis, assembly, debugging, and characterization of a synthetic 404,963 bp chromosome, synIX (synthetic chromosome IX). Combined chromosome construction methods were used to synthesize and integrate its left arm (synIXL) into a strain containing previously described synIXR. We identified and resolved a bug affecting expression of EST3, a crucial gene for telomerase function, producing a synIX strain with near wild-type fitness. To facilitate future synthetic chromosome consolidation and increase flexibility of chromosome transfer between distinct strains, we combined chromoduction, a method to transfer a whole chromosome between two strains, with conditional centromere destabilization to substitute a chromosome of interest for its native counterpart. Both steps of this chromosome substitution method were efficient. We observed that wild-type II tended to co-transfer with synIX and was co-destabilized with wild-type IX, suggesting a potential gene dosage compensation relationship between these chromosomes.
PMCID:10667316
PMID: 38020974
ISSN: 2666-979x
CID: 5617102

Synthetic yeast chromosome XI design provides a testbed for the study of extrachromosomal circular DNA dynamics

Blount, Benjamin A; Lu, Xinyu; Driessen, Maureen R M; Jovicevic, Dejana; Sanchez, Mateo I; Ciurkot, Klaudia; Zhao, Yu; Lauer, Stephanie; McKiernan, Robert M; Gowers, Glen-Oliver F; Sweeney, Fiachra; Fanfani, Viola; Lobzaev, Evgenii; Palacios-Flores, Kim; Walker, Roy S K; Hesketh, Andy; Cai, Jitong; Oliver, Stephen G; Cai, Yizhi; Stracquadanio, Giovanni; Mitchell, Leslie A; Bader, Joel S; Boeke, Jef D; Ellis, Tom
We describe construction of the synthetic yeast chromosome XI (synXI) and reveal the effects of redesign at non-coding DNA elements. The 660-kb synthetic yeast genome project (Sc2.0) chromosome was assembled from synthesized DNA fragments before CRISPR-based methods were used in a process of bug discovery, redesign, and chromosome repair, including precise compaction of 200 kb of repeat sequence. Repaired defects were related to poor centromere function and mitochondrial health and were associated with modifications to non-coding regions. As part of the Sc2.0 design, loxPsym sequences for Cre-mediated recombination are inserted between most genes. Using the GAP1 locus from chromosome XI, we show that these sites can facilitate induced extrachromosomal circular DNA (eccDNA) formation, allowing direct study of the effects and propagation of these important molecules. Construction and characterization of synXI contributes to our understanding of non-coding DNA elements, provides a useful tool for eccDNA study, and will inform future synthetic genome design.
PMCID:10667340
PMID: 38020971
ISSN: 2666-979x
CID: 5617092

Establishing chromosomal design-build-test-learn through a synthetic chromosome and its combinatorial reconfiguration

Foo, Jee Loon; Kitano, Shohei; Susanto, Adelia Vicanatalita; Jin, Zhu; Lin, Yicong; Luo, Zhouqing; Huang, Linsen; Liang, Zhenzhen; Mitchell, Leslie A; Yang, Kun; Wong, Adison; Cai, Yizhi; Cai, Jitong; Stracquadanio, Giovanni; Bader, Joel S; Boeke, Jef D; Dai, Junbiao; Chang, Matthew Wook
Chromosome-level design-build-test-learn cycles (chrDBTLs) allow systematic combinatorial reconfiguration of chromosomes with ease. Here, we established chrDBTL with a redesigned synthetic Saccharomyces cerevisiae chromosome XV, synXV. We designed and built synXV to harbor strategically inserted features, modified elements, and synonymously recoded genes throughout the chromosome. Based on the recoded chromosome, we developed a method to enable chrDBTL: CRISPR-Cas9-mediated mitotic recombination with endoreduplication (CRIMiRE). CRIMiRE allowed the creation of customized wild-type/synthetic combinations, accelerating genotype-phenotype mapping and synthetic chromosome redesign. We also leveraged synXV as a "build-to-learn" model organism for translation studies by ribosome profiling. We conducted a locus-to-locus comparison of ribosome occupancy between synXV and the wild-type chromosome, providing insight into the effects of codon changes and redesigned features on translation dynamics in vivo. Overall, we established synXV as a versatile reconfigurable system that advances chrDBTL for understanding biological mechanisms and engineering strains.
PMCID:10667554
PMID: 38020970
ISSN: 2666-979x
CID: 5617082

Context-dependent neocentromere activity in synthetic yeast chromosome VIII

Lauer, Stephanie; Luo, Jingchuan; Lazar-Stefanita, Luciana; Zhang, Weimin; McCulloch, Laura H; Fanfani, Viola; Lobzaev, Evgenii; Haase, Max A B; Easo, Nicole; Zhao, Yu; Yu, Fangzhou; Cai, Jitong; ,; Bader, Joel S; Stracquadanio, Giovanni; Boeke, Jef D
Pioneering advances in genome engineering, and specifically in genome writing, have revolutionized the field of synthetic biology, propelling us toward the creation of synthetic genomes. The Sc2.0 project aims to build the first fully synthetic eukaryotic organism by assembling the genome of Saccharomyces cerevisiae. With the completion of synthetic chromosome VIII (synVIII) described here, this goal is within reach. In addition to writing the yeast genome, we sought to manipulate an essential functional element: the point centromere. By relocating the native centromere sequence to various positions along chromosome VIII, we discovered that the minimal 118-bp CEN8 sequence is insufficient for conferring chromosomal stability at ectopic locations. Expanding the transplanted sequence to include a small segment (∼500 bp) of the CDEIII-proximal pericentromere improved chromosome stability, demonstrating that minimal centromeres display context-dependent functionality.
PMCID:10667555
PMID: 38020969
ISSN: 2666-979x
CID: 5617072

Dissecting aneuploidy phenotypes by constructing Sc2.0 chromosome VII and SCRaMbLEing synthetic disomic yeast

Shen, Yue; Gao, Feng; Wang, Yun; Wang, Yuerong; Zheng, Ju; Gong, Jianhui; Zhang, Jintao; Luo, Zhouqing; Schindler, Daniel; Deng, Yang; Ding, Weichao; Lin, Tao; Swidah, Reem; Zhao, Hongcui; Jiang, Shuangying; Zeng, Cheng; Chen, Shihong; Chen, Tai; Wang, Yong; Luo, Yisha; Mitchell, Leslie; Bader, Joel S; Zhang, Guojie; Shen, Xia; Wang, Jian; Fu, Xian; Dai, Junbiao; Boeke, Jef D; Yang, Huanming; Xu, Xun; Cai, Yizhi
Aneuploidy compromises genomic stability, often leading to embryo inviability, and is frequently associated with tumorigenesis and aging. Different aneuploid chromosome stoichiometries lead to distinct transcriptomic and phenotypic changes, making it helpful to study aneuploidy in tightly controlled genetic backgrounds. By deploying the engineered SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution) system to the newly synthesized megabase Sc2.0 chromosome VII (synVII), we constructed a synthetic disomic yeast and screened hundreds of SCRaMbLEd derivatives with diverse chromosomal rearrangements. Phenotypic characterization and multi-omics analysis revealed that fitness defects associated with aneuploidy could be restored by (1) removing most of the chromosome content or (2) modifying specific regions in the duplicated chromosome. These findings indicate that both chromosome copy number and specific chromosomal regions contribute to the aneuploidy-related phenotypes, and the synthetic chromosome resource opens new paradigms in studying aneuploidy.
PMCID:10667312
PMID: 38020968
ISSN: 2666-979x
CID: 5617062

Synthetic chromosome fusion: Effects on mitotic and meiotic genome structure and function

Luo, Jingchuan; Vale-Silva, Luis A; Raghavan, Adhithi R; Mercy, Guillaume; Heldrich, Jonna; Sun, Xiaoji; Li, Mingyu Kenneth; Zhang, Weimin; Agmon, Neta; Yang, Kun; Cai, Jitong; Stracquadanio, Giovanni; Thierry, Agnès; Zhao, Yu; Coelho, Camila; McCulloch, Laura H; Lauer, Stephanie; ,; Kaback, David B; Bader, Joel S; Mitchell, Leslie A; Mozziconacci, Julien; Koszul, Romain; Hochwagen, Andreas; Boeke, Jef D
We designed and synthesized synI, which is ∼21.6% shorter than native chrI, the smallest chromosome in Saccharomyces cerevisiae. SynI was designed for attachment to another synthetic chromosome due to concerns surrounding potential instability and karyotype imbalance and is now attached to synIII, yielding the first synthetic yeast fusion chromosome. Additional fusion chromosomes were constructed to study nuclear function. ChrIII-I and chrIX-III-I fusion chromosomes have twisted structures, which depend on silencing protein Sir3. As a smaller chromosome, chrI also faces special challenges in assuring meiotic crossovers required for efficient homolog disjunction. Centromere deletions into fusion chromosomes revealed opposing effects of core centromeres and pericentromeres in modulating deposition of the crossover-promoting protein Red1. These effects extend over 100 kb and promote disproportionate Red1 enrichment, and thus crossover potential, on small chromosomes like chrI. These findings reveal the power of synthetic genomics to uncover new biology and deconvolute complex biological systems.
PMCID:10667551
PMID: 38020967
ISSN: 2666-979x
CID: 5617052

Mouse genome rewriting and tailoring of three important disease loci

Zhang, Weimin; Golynker, Ilona; Brosh, Ran; Fajardo, Alvaro; Zhu, Yinan; Wudzinska, Aleksandra M; Ordoñez, Raquel; Ribeiro-Dos-Santos, André M; Carrau, Lucia; Damani-Yokota, Payal; Yeung, Stephen T; Khairallah, Camille; Vela Gartner, Antonio; Chalhoub, Noor; Huang, Emily; Ashe, Hannah J; Khanna, Kamal M; Maurano, Matthew T; Kim, Sang Yong; tenOever, Benjamin R; Boeke, Jef D
Genetically engineered mouse models (GEMMs) help us to understand human pathologies and develop new therapies, yet faithfully recapitulating human diseases in mice is challenging. Advances in genomics have highlighted the importance of non-coding regulatory genome sequences, which control spatiotemporal gene expression patterns and splicing in many human diseases1,2. Including regulatory extensive genomic regions, which requires large-scale genome engineering, should enhance the quality of disease modelling. Existing methods set limits on the size and efficiency of DNA delivery, hampering the routine creation of highly informative models that we call genomically rewritten and tailored GEMMs (GREAT-GEMMs). Here we describe 'mammalian switching antibiotic resistance markers progressively for integration' (mSwAP-In), a method for efficient genome rewriting in mouse embryonic stem cells. We demonstrate the use of mSwAP-In for iterative genome rewriting of up to 115 kb of a tailored Trp53 locus, as well as for humanization of mice using 116 kb and 180 kb human ACE2 loci. The ACE2 model recapitulated human ACE2 expression patterns and splicing, and notably, presented milder symptoms when challenged with SARS-CoV-2 compared with the existing K18-hACE2 model, thus representing a more human-like model of infection. Finally, we demonstrated serial genome writing by humanizing mouse Tmprss2 biallelically in the ACE2 GREAT-GEMM, highlighting the versatility of mSwAP-In in genome writing.
PMCID:10632133
PMID: 37914927
ISSN: 1476-4687
CID: 5606842

Longitudinal scRNA-seq analysis in mouse and human informs optimization of rapid mouse astrocyte differentiation protocols

Frazel, Paul W; Labib, David; Fisher, Theodore; Brosh, Ran; Pirjanian, Nicolette; Marchildon, Anne; Boeke, Jef D; Fossati, Valentina; Liddelow, Shane A
Macroglia (astrocytes and oligodendrocytes) are required for normal development and function of the central nervous system, yet many questions remain about their emergence during the development of the brain and spinal cord. Here we used single-cell/single-nucleus RNA sequencing (scRNA-seq/snRNA-seq) to analyze over 298,000 cells and nuclei during macroglia differentiation from mouse embryonic and human-induced pluripotent stem cells. We computationally identify candidate genes involved in the fate specification of glia in both species and report heterogeneous expression of astrocyte surface markers across differentiating cells. We then used our transcriptomic data to optimize a previous mouse astrocyte differentiation protocol, decreasing the overall protocol length and complexity. Finally, we used multi-omic, dual single-nuclei (sn)RNA-seq/snATAC-seq analysis to uncover potential genomic regulatory sites mediating glial differentiation. These datasets will enable future optimization of glial differentiation protocols and provide insight into human glial differentiation.
PMID: 37697111
ISSN: 1546-1726
CID: 5593902