Try a new search

Format these results:

Searched for:

name:Chuanshu

school:SOM

Total Results:

181


Downregulation of miR-200c stabilizes XIAP mRNA and contributes to invasion and lung metastasis of bladder cancer

Jin, Honglei; Xue, Lei; Mo, Lan; Zhang, Dongyun; Guo, Xirui; Xu, Jiheng; Li, Jingxia; Peng, Minggang; Zhao, Xuewei; Zhong, Minghao; Xu, Dazhong; Wu, Xue-Ru; Huang, Haishan; Huang, Chuanshu
Our previous studies have demonstrated that XIAP promotes bladder cancer metastasis through upregulating RhoGDIβ/MMP-2 pathway. However, the molecular mechanisms leading to the XIAP upregulation was unclear. In current studies, we found that XIAP was overexpressed in human high grade BCs, high metastatic human BCs, and in mouse invasive BCs. Mechanistic studies indicated that XIAP overexpression in the highly metastatic T24T cells was due to increased mRNA stability of XIAP that was mediated by downregulated miR-200c. Moreover, the downregulated miR-200c was due to CREB inactivation, while miR-200c downregulation reduced its binding to the 3'-UTR region of XIAP mRNA. Collectively, our results demonstrate the molecular basis leading to XIAP overexpression and its crucial role in BC invasion.
PMID: 31240993
ISSN: 1933-6926
CID: 3963692

Neutrophilic Granule Protein Is a Novel Murine LPS Antagonist

Hong, Jaewoo; Qu, Peng; Wuest, Todd R; Huang, Haishan; Huang, Chuanshu; Lin, P Charles
Neutrophilic granule protein (NGP) was previously reported as a granular protein of neutrophils in mouse, but the function has not been known clearly. We found the presence of the possible signal peptide in NGP and validated this protein is circulating in the bloodstream. In our findings, NGP is being modified post-translationally in Golgi apparatus and endoplasmic reticulum, which is a universal character of secretory molecules with a signal peptide. The secreted NGP protein could be detected both in vitro and in vivo. NGP has sequence similarity with an antimicrobial protein cathelicidin, and we observed the aspect of inflammation of NGP. Interestingly, NGP interacts with the complex of LPS and LPS binding protein (LBP). This interaction blocks the binding of the complex of LPS and LBP to TLR4 and the downstream inflammatory signals. Furthermore, the inhibitory function of NGP against the inflammatory effect of LPS could be observed in both in vitro and in vivo. With these findings, we report NGP is a novel secretory protein to mask LPS and inhibit its function.
PMCID:6829075
PMID: 31720045
ISSN: 1598-2629
CID: 4186872

p85α Inactivates MMP-2 and Suppresses Bladder Cancer Invasion by Inhibiting MMP-14 Transcription and TIMP-2 Degradation

Wang, Jingjing; Zhang, Ning; Peng, Minggang; Hua, Xiaohui; Huang, Chao; Tian, Zhongxian; Xie, Qipeng; Zhu, Junlan; Li, Jingxia; Huang, Haishan; Huang, Chuanshu
Recent studies show p85α up-regulates epidermal growth factor (EGF) receptor, thereby promoting malignant cell transformation and migration in normal mouse embryonic fibroblasts (MEFs). However, the potential role of p85α in human bladder cancer (BC) remains unknown. Here, we show that p85α is down-regulated in BC tumor tissues. Ectopic expression of p85α inhibited cell invasion, but not migration, whereas p85α knockdown promoted invasion in BC cells, revealing that p85α inhibits BC invasion. Overexpression of kinase-deficient p110 in T24 T(p85α) cells inhibited BC cell migration, but not invasion, suggesting that the inhibition of p85α on invasion is independent of PI3K activity. The effect of p85α on inhibiting BC invasion was mediated by the inactivation of MMP-2 concomitant with the up-regulation of TIMP-2 and down-regulation of MMP-14. Mechanistic studies revealed c-Jun inactivation was associated with p85α knockdown-induced MMP-14 expression, and down-regulated miR-190, leading to ATG7 mRNA degradation. This suppressed the autophagy-dependent removal of TIMP-2 in human BC cells. The present results identify a novel function of p85α and clarify the mechanisms underlying its inhibition of BC invasion, providing insight into the role of p85α in normal and cancer cells.
PMID: 31401412
ISSN: 1476-5586
CID: 4043122

Inhibition of UBE2N-dependent CDK6 protein degradation by miR-934 promotes human bladder cancer cell growth

Yan, Huiying; Ren, Shuwei; Lin, Qi; Yu, Yuan; Chen, Caiyi; Hua, Xiaohui; Jin, Honglei; Lu, Yongyong; Zhang, Huxiang; Xie, Qipeng; Huang, Chuanshu; Huang, Haishan
Because bladder cancer (BC) is one of the most common malignant cancers of the urinary system, identification of BC cell growth-associated effectors is of great significance. Cyclin-dependent kinase (CDK)6 is a member of the CDK family of cell cycle-related proteins and plays an important role in cancer cell growth. This is borne out by the fact that a CDK6 inhibitor had been approved to treat several types of cancers. Nevertheless, underlying molecular mechanisms concerning how to regulate CDK6 expression in BC remains unclear. In the present study, it was observed that miR-934 was much higher in human BCs and human BC cell lines as well. The results also revealed that miR-934 inhibition dramatically decreased human BC cell monolayer growth in vitro and xenograft tumor growth in vivo; the outcomes were accompanied by CDK6 protein down-regulation and G0-G1 cell cycle arrest. Moreover, overexpression of CDK6 reversed the inhibition of BC cell growth induced by miR-934. Further studies showed that miR-934 binds to a 3'-UTR of ubiquitin-conjugating enzyme 2N (ube2n) mRNA, down-regulated UBE2N protein expression; this, in turn, attenuated CDK6 protein degradation and led to CDK6 protein accumulation as well as the promotion of BC tumor growth. Collectively, this study not only establishes a novel regulatory axis of miR-934/UBE2N of CDK6 but also provides data suggesting that miR-934 and UBE2N may be potentially promising targets for therapeutic strategies against BC.-Yan, H., Ren, S., Lin, Q., Yu, Y., Chen, C., Hua, X., Jin, H., Lu, Y., Zhang, H., Xie, Q., Huang, C., Huang, H. Inhibition of UBE2N-dependent CDK6 protein degradation by miR-934 promotes human bladder cancer cell growth.
PMID: 31373842
ISSN: 1530-6860
CID: 4015482

Transcriptionally elevation of miR-494 by new ChlA-F compound via a HuR/JunB axis inhibits human bladder cancer cell invasion

Tian, Zhongxian; Luo, Yisi; Zhu, Junlan; Hua, Xiaohui; Xu, Jiheng; Huang, Chao; Jin, Honglei; Huang, Haishan; Huang, Chuanshu
Muscle invasive bladder cancer (MIBC) is characterized by a poor overall survival rate in patients. Therefore, innovation and evaluation of idea anti-cancer compounds is of importance for reducing the mortality of MIBCs. The chemotherapeutic activity of ChlA-F, a novel C8 fluoride derivative of cheliensisin A with potent anti-neoplastic properties, was barely investigated. We reported here that ChlA-F treatment significantly induced miR-494 expression and suppressed cell invasion in human MIBC cells. Our results indicated that miR-494 was downregulated in M1 metastatic BC patients in comparison to non-metastatic (M0) BC patients, and such downregulation was also well correlated with over survival rate for MIBC patients. Mechanistically, ChlA-F-induced upregulation of miR-494 was due to a HuR-mediated increase in JunB mRNA stabilization and protein expression, which led to an increase in miR-494 transcription via directly binding to the miR-494 promoter region, while the upregulated miR-494 was able to bind the 3'-UTR region of c-Myc mRNA, resulting in decreased c-Myc mRNA stability and protein expression and further reducing the transcription of c-Myc-regulated MMP-2 and ultimately inhibiting BC invasion. Our results provide the first evidence showing that miR-494 downregulation was closely associated with BC metastatic status and overall BC survival, and ChlA-F was able to reverse the level of miR-494 with a profound inhibition of human BC invasion in human invasive BC cells. Our studies also reveal that ChlA-F is a promising therapeutic compound for BCs and miR-494 could also serve as a promising therapeutic target for the treatment of MIBC patients.
PMID: 31167152
ISSN: 1876-4320
CID: 3923462

miR-3687 Overexpression Promotes Bladder Cancer Cell Growth by Inhibiting the Negative Effect of FOXP1 on Cyclin E2 Transcription

Xie, Qipeng; Chen, Caiyi; Li, Haiying; Xu, Jiheng; Wu, Lei; Yu, Yuan; Ren, Shuwei; Li, Hongyan; Hua, Xiaohui; Yan, Huiying; Rao, Dapang; Zhang, Huxiang; Jin, Honglei; Huang, Haishan; Huang, Chuanshu
Cyclin E2, a member of the cyclin family, is a key cell cycle-related protein. This protein plays essential roles in cancer progression, and, as such, an inhibitor of cyclin E2 has been approved to treat several types of cancers. Even so, mechanisms underlying how to regulate cyclin E2 expression in cancer remain largely unknown. In the current study, miR-3687 was upregulated in clinical bladder cancer (BC) tumor tissues, The Cancer Genome Atlas (TCGA) database, and human BC cell lines. Inhibition of miR-3687 expression significantly reduced human BC cell proliferation in vitro and tumor growth in vivo, which coincided with the induction of G0/G1 cell cycle arrest and downregulation of cyclin E2 protein expression. Interestingly, overexpression of cyclin E2 reversed the inhibition of BC proliferation induced by miR-3687. Mechanistic studies suggested that miR-3687 binds to the 3' UTR of foxp1 mRNA, downregulates FOXP1 protein expression, and in turn promotes the transcription of cyclin E2, thereby promoting the growth of BC cells. Collectively, the current study not only establishes a novel regulatory axis of miR-3687/FOXP1 regarding regulation of cyclin E2 expression in BC cells, but also provides strong suggestive evidence that miR-3687 and FOXP1 may be promising targets in therapeutic strategies for human BC.
PMID: 30935821
ISSN: 1525-0024
CID: 3783912

ATG7 Promotes Bladder Cancer Invasion via Autophagy-Mediated Increased ARHGDIB mRNA Stability

Zhu, Junlan; Tian, Zhongxian; Li, Yang; Hua, Xiaohui; Zhang, Dongyun; Li, Jingxia; Jin, Honglei; Xu, Jiheng; Chen, Wei; Niu, Beifang; Wu, Xue-Ru; Comincini, Sergio; Huang, Haishan; Huang, Chuanshu
Since invasive bladder cancer (BC) can progress to life threatening metastases, understanding the molecular mechanisms underlying BC invasion is crucial for potentially decreasing the mortality of this disease. Herein, it is discovered that autophagy-related gene 7 (ATG7) is remarkably overexpressed in human invasive BC tissues. The knockdown of ATG7 in human BC cells dramatically inhibits cancer cell invasion, revealing that ATG7 is a key player in regulating BC invasion. Mechanistic studies indicate that MIR190A is responsible for ATG7 mRNA stability and protein overexpression by directly binding to ATG7 mRNA 3'-UTR. Furthermore, ATG7-mediated autophagy promotes HNRNPD (ARE/poly(U)-binding/degradation factor 1) protein degradation, and in turn reduces HNRNPD interaction with ARHGDIB mRNA, resulting in the elevation of ARHGDIB mRNA stability, and subsequently leading to BC cell invasion. The identification of the MIR190A/ATG7 autophagic mechanism regulation of HNRNPD/ARHGDIB expression provides an important insight into understanding the nature of BC invasion and suggests that autophagy may represent a potential therapeutic strategy for the treatment of human BC patients.
PMCID:6468970
PMID: 31016112
ISSN: 2198-3844
CID: 3860032

MicroRNA-3648 Is Upregulated to Suppress TCF21, Resulting in Promotion of Invasion and Metastasis of Human Bladder Cancer

Sun, Wenrui; Li, Shi; Yu, Yuan; Jin, Honglei; Xie, Qipeng; Hua, Xiaohui; Wang, Shuai; Tian, Zhongxian; Zhang, Huxiang; Jiang, Guosong; Huang, Chuanshu; Huang, Haishan
Although microRNAs (miRNAs) are well-known for their potential in cancer, the function and mechanisms of miR-3648 have barely been explored in any type of cancer. We show here that miR-3648 is upregulated in human BC tissues in comparison with adjacent non-tumor tissues. Functional studies showed that inhibition of miR-3648 expression in the human invasive BC UMUC3 and T24T cell lines decreased migration and invasion in vitro and suppressed lung metastasis in vivo, whereas miR-3648 overexpression promoted BC cell migration and invasion. A bioinformatics screen and mRNA 3' UTR luciferase reporter assay showed that transcription factor 21 (TCF21) was a direct target of miR-3648, and the results obtained from using a miR-3648 inhibitor revealed that miR-3648 inhibited TCF21 protein expression by reduction of its mRNA stability. Further, Kisspeptin 1 (KISS1) was identified as a TCF21 downstream effector responsible for miR-3648-mediated BC invasion and lung metastasis. Collectively, the present results suggest that miR-3648 is overexpressed and plays an oncogenic role in mediation of BC invasion and metastasis through directing the TCF21/KISS1 axis, revealing miR-3648 as a potential biomarker for BC prognosis and a target for BC therapy.
PMCID:6506626
PMID: 31071528
ISSN: 2162-2531
CID: 3864742

The RING domain in the anti-apoptotic protein XIAP stabilizes c-Myc protein and preserves anchorage-independent growth of bladder cancer cells

Jiang, Guosong; Huang, Chao; Liao, Xin; Li, Jingxia; Wu, Xue-Ru; Zeng, Fuqing; Huang, Chuanshu
X-linked inhibitor of apoptosis protein (XIAP) suppresses apoptosis and plays key roles in the development, growth, migration, and invasion of cancer cells. Therefore, XIAP has recently attracted much attention as a potential antineoplastic therapeutic target, requiring elucidation of the molecular mechanisms underlying its biological activities. Here, using shRNA-mediated gene silencing, immunoblotting, quantitative RT-PCR, anchorage-independent growth assay, and invasive assay, we found that XIAP's RING domain, but not its BIR domain, is crucial for XIAP-mediated up-regulation of c-Myc protein expression in human bladder cancer (BC) cells. Mechanistically, we observed that the RING domain stabilizes c-Myc by inhibiting its phosphorylation at Thr-58, and that this inhibition is due to activated ERK1/2-mediated phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser-9. Functional studies further revealed that c-Myc protein promotes anchorage-independent growth and invasion stimulated by the XIAP RING domain in human BC cells. Collectively, the findings in our study uncover that the RING domain of XIAP supports c-Myc protein stability, providing insight into the molecular mechanism and role of c-Myc overexpression in cancer progression. Our observations support the notion of targeting XIAP's RING domain and c-Myc in cancer therapy.
PMID: 30819803
ISSN: 1083-351x
CID: 3698652

CD44s is a crucial ATG7 downstream regulator for stem-like property, invasion, and lung metastasis of human bladder cancer (BC) cells

Zhu, Junlan; Huang, Grace; Hua, Xiaohui; Li, Yang; Yan, Huiying; Che, Xun; Tian, Zhongxian; Liufu, Huating; Huang, Chao; Li, Jingxia; Xu, Jiheng; Dai, Wei; Huang, Haishan; Huang, Chuanshu
Over half a million US residents are suffering with bladder cancer (BC), which costs a total $4 billion in treatment annually. Although recent studies report that autophagy-related gene 7 (ATG7) is overexpressed in BCs, the regulatory effects of ATG7 on cancer stem-like phenotypes and invasion have not been explored yet. Current studies demonstrated that the deficiency of ATG7 by its shRNA dramatically reduced sphere formation and invasion in vitro, as well as lung metastasis in vivo in human invasive BC cells. Further studies indicated that the knockdown of ATG7 attenuated the expression of CD44 standard (CD44s), while ectopic introduction of CD44s, was capable of completely restoring sphere formation, invasion, and lung metastasis in T24T(shATG7) cells. Mechanistic studies revealed that ATG7 overexpression stabilized CD44s proteins accompanied with upregulating USP28 proteins. Upregulated USP28 was able to bind to CD44s and remove the ubiquitin group from CD44s' protein, resulting in the stabilization of CD44s protein. Moreover, ATG7 inhibition stabilized AUF1 protein and thereby reduced tet1 mRNA stability and expression, which was able to demethylate usp28 promoter, reduced USP28 expression, finally promoting CD44s degradation. In addition, CD44s was defined to inhibit degradation of RhoGDIβ, which in turn promotes BC invasion. Our results demonstrate that CD44s is a key ATG7 downstream regulator of the sphere formation, invasion, and lung metastasis of BCs, providing significant insight into understanding the BC invasions, metastasis, and stem-like properties.
PMID: 30635654
ISSN: 1476-5594
CID: 3580082