Try a new search

Format these results:

Searched for:

name:Dasen

school:SOM

Total Results:

58


Correction: HOXA5 plays tissue-specific roles in the developing respiratory system (doi: 10.1242/dev.152686)

Landry-Truchon, Kim; Houde, Nicolas; Boucherat, Olivier; Joncas, France-Hélène; Dasen, Jeremy S; Philippidou, Polyxeni; Mansfield, Jennifer H; Jeannotte, Lucie
PMID: 31548252
ISSN: 1477-9129
CID: 4107502

Molecular Logic of Spinocerebellar Tract Neuron Diversity and Connectivity

Baek, Myungin; Menon, Vilas; Jessell, Thomas M; Hantman, Adam W; Dasen, Jeremy S
Coordinated motor behaviors depend on feedback communication between peripheral sensory systems and central circuits in the brain and spinal cord. Relay of muscle- and tendon-derived sensory information to the CNS is facilitated by functionally and anatomically diverse groups of spinocerebellar tract neurons (SCTNs), but the molecular logic by which SCTN diversity and connectivity is achieved is poorly understood. We used single-cell RNA sequencing and genetic manipulations to define the mechanisms governing the molecular profile and organization of SCTN subtypes. We found that SCTNs relaying proprioceptive sensory information from limb and axial muscles are generated through segmentally restricted actions of specific Hox genes. Loss of Hox function disrupts SCTN-subtype-specific transcriptional programs, leading to defects in the connections between proprioceptive sensory neurons, SCTNs, and the cerebellum. These results indicate that Hox-dependent genetic programs play essential roles in the assembly of neural circuits necessary for communication between the brain and spinal cord.
PMID: 31141687
ISSN: 2211-1247
CID: 3909092

Evolution of Locomotor Rhythms

Dasen, Jeremy S
Nervous systems control locomotion using rhythmically active networks that orchestrate motor neuron firing patterns. Whether animals use common or distinct genetic programs to encode motor rhythmicity remains unclear. Cross-species comparisons have revealed remarkably conserved neural patterning systems but have also unveiled divergent circuit architectures that can generate similar locomotor behaviors.
PMID: 30274599
ISSN: 1878-108x
CID: 3319162

Development, functional organization, and evolution of vertebrate axial motor circuits

D'Elia, Kristen P; Dasen, Jeremy S
Neuronal control of muscles associated with the central body axis is an ancient and essential function of the nervous systems of most animal species. Throughout the course of vertebrate evolution, motor circuits dedicated to control of axial muscle have undergone significant changes in their roles within the motor system. In most fish species, axial circuits are critical for coordinating muscle activation sequences essential for locomotion and play important roles in postural correction. In tetrapods, axial circuits have evolved unique functions essential to terrestrial life, including maintaining spinal alignment and breathing. Despite the diverse roles of axial neural circuits in motor behaviors, the genetic programs underlying their assembly are poorly understood. In this review, we describe recent studies that have shed light on the development of axial motor circuits and compare and contrast the strategies used to wire these neural networks in aquatic and terrestrial vertebrate species.
PMCID:5984435
PMID: 29855378
ISSN: 1749-8104
CID: 3135942

De Novo DNA Methylation: Marking the Path from Stem Cell to Neural Fate

Sawai, Ayana; Dasen, Jeremy S
DNA methylation is an epigenetic mark that plays pivotal roles in gene regulation, but its functions in neural fate decisions are poorly understood. In this issue of Cell Stem Cell, Ziller et al. (2018) show that the de novo methyltransferase Dnmt3a ensures efficient generation of motor neurons from stem cells.
PMID: 29625060
ISSN: 1875-9777
CID: 3026212

The Ancient Origins of Neural Substrates for Land Walking

Jung, Heekyung; Baek, Myungin; D'Elia, Kristen P; Boisvert, Catherine; Currie, Peter D; Tay, Boon-Hui; Venkatesh, Byrappa; Brown, Stuart M; Heguy, Adriana; Schoppik, David; Dasen, Jeremy S
Walking is the predominant locomotor behavior expressed by land-dwelling vertebrates, but it is unknown when the neural circuits that are essential for limb control first appeared. Certain fish species display walking-like behaviors, raising the possibility that the underlying circuitry originated in primitive marine vertebrates. We show that the neural substrates of bipedalism are present in the little skate Leucoraja erinacea, whose common ancestor with tetrapods existed ∼420 million years ago. Leucoraja exhibits core features of tetrapod locomotor gaits, including left-right alternation and reciprocal extension-flexion of the pelvic fins. Leucoraja also deploys a remarkably conserved Hox transcription factor-dependent program that is essential for selective innervation of fin/limb muscle. This network encodes peripheral connectivity modules that are distinct from those used in axial muscle-based swimming and has apparently been diminished in most modern fish. These findings indicate that the circuits that are essential for walking evolved through adaptation of a genetic regulatory network shared by all vertebrates with paired appendages. VIDEO ABSTRACT.
PMCID:5808577
PMID: 29425489
ISSN: 1097-4172
CID: 2948352

Topographic Maps: Motor Axons Wait Their Turn

D'Elia, Kristen P; Dasen, Jeremy S
Topographic maps are a basic organizational feature of nervous systems, and their construction involves both spatial and temporal cues. A recent study reports a novel mechanism of topographic map formation which relies on the timing of axon initiation.
PMID: 29374453
ISSN: 1879-0445
CID: 2929102

Origin and Segmental Diversity of Spinal Inhibitory Interneurons

Sweeney, Lora B; Bikoff, Jay B; Gabitto, Mariano I; Brenner-Morton, Susan; Baek, Myungin; Yang, Jerry H; Tabak, Esteban G; Dasen, Jeremy S; Kintner, Christopher R; Jessell, Thomas M
Motor output varies along the rostro-caudal axis of the tetrapod spinal cord. At limb levels, ∼60 motor pools control the alternation of flexor and extensor muscles about each joint, whereas at thoracic levels as few as 10 motor pools supply muscle groups that support posture, inspiration, and expiration. Whether such differences in motor neuron identity and muscle number are associated with segmental distinctions in interneuron diversity has not been resolved. We show that select combinations of nineteen transcription factors that specify lumbar V1 inhibitory interneurons generate subpopulations enriched at limb and thoracic levels. Specification of limb and thoracic V1 interneurons involves the Hox gene Hoxc9 independently of motor neurons. Thus, early Hox patterning of the spinal cord determines the identity of V1 interneurons and motor neurons. These studies reveal a developmental program of V1 interneuron diversity, providing insight into the organization of inhibitory interneurons associated with differential motor output.
PMCID:5880537
PMID: 29307712
ISSN: 1097-4199
CID: 2906602

Columnar-Intrinsic Cues Shape Premotor Input Specificity in Locomotor Circuits

Baek, Myungin; Pivetta, Chiara; Liu, Jeh-Ping; Arber, Silvia; Dasen, Jeremy S
Control of movement relies on the ability of circuits within the spinal cord to establish connections with specific subtypes of motor neuron (MN). Although the pattern of output from locomotor networks can be influenced by MN position and identity, whether MNs exert an instructive role in shaping synaptic specificity within the spinal cord is unclear. We show that Hox transcription-factor-dependent programs in MNs are essential in establishing the central pattern of connectivity within the ventral spinal cord. Transformation of axially projecting MNs to a limb-level lateral motor column (LMC) fate, through mutation of the Hoxc9 gene, causes the central afferents of limb proprioceptive sensory neurons to target MNs connected to functionally inappropriate muscles. MN columnar identity also determines the pattern and distribution of inputs from multiple classes of premotor interneurons, indicating that MNs broadly influence circuit connectivity. These findings indicate that MN-intrinsic programs contribute to the initial architecture of locomotor circuits.
PMCID:5665584
PMID: 29069594
ISSN: 2211-1247
CID: 2756562

HOXA5 plays tissue-specific roles in the developing respiratory system

Landry-Truchon, Kim; Houde, Nicolas; Boucherat, Olivier; Joncas, France-Helene; Dasen, Jeremy S; Philippidou, Polyxeni; Mansfield, Jennifer H; Jeannotte, Lucie
Hoxa5 is essential for development of several organs and tissues. In the respiratory system, loss of Hoxa5 function causes neonatal death due to respiratory distress. Expression of HOXA5 protein in mesenchyme of the respiratory tract and in phrenic motor neurons of the central nervous system led us to address the individual contribution of these Hoxa5 expression domains with a conditional gene targeting approach. Hoxa5 does not play a cell-autonomous role in lung epithelium, consistent with lack of HOXA5 expression in this cell layer. In contrast, ablation of Hoxa5 in mesenchyme perturbed trachea development, lung epithelial cell differentiation and lung growth. Further, deletion of Hoxa5 in motor neurons resulted in abnormal diaphragm innervation and musculature, and lung hypoplasia. It also reproduced the neonatal lethality observed in null mutants, indicating that the defective diaphragm is the main cause of impaired survival at birth. Thus, Hoxa5 possesses tissue-specific functions that differentially contribute to the morphogenesis of the respiratory tract.
PMID: 28827394
ISSN: 1477-9129
CID: 2676672