Try a new search

Format these results:

Searched for:

name:nance, Jeremy

school:SOM

Total Results:

34


Mechanisms of CDC-42 activation during contact-induced cell polarization

Chan, Emily; Nance, Jeremy
Polarization of early embryos provides a foundation to execute essential patterning and morphogenetic events. In Caenorhabditis elegans, cell contacts polarize early embryos along their radial axis by excluding the cortical polarity protein PAR-6 from sites of cell contact, thereby restricting PAR-6 to contact-free cell surfaces. Radial polarization requires the cortically enriched Rho GTPase CDC-42, which in its active form recruits PAR-6 through direct binding. The Rho GTPase activating protein (RhoGAP) PAC-1, which localizes specifically to cell contacts, triggers radial polarization by inactivating CDC-42 at these sites. The mechanisms responsible for activating CDC-42 at contact-free surfaces are unknown. Here, in an overexpression screen of Rho guanine nucleotide exchange factors (RhoGEFs), which can activate Rho GTPases, we identify CGEF-1 and ECT-2 as RhoGEFs that act through CDC-42 to recruit PAR-6 to the cortex. We show that ECT-2 and CGEF-1 localize to the cell surface and that removing their activity causes a reduction in levels of cortical PAR-6. Through a structure-function analysis, we show that the tandem DH-PH domains of CGEF-1 and ECT-2 are sufficient for GEF activity, but that regions outside of these domains target each protein to the cell surface. Finally, we provide evidence suggesting that the N-terminal region of ECT-2 may direct its in vivo preference for CDC-42 over another known target, the Rho GTPase RHO-1. We propose that radial polarization results from a competition between RhoGEFs, which activate CDC-42 throughout the cortex, and the RhoGAP PAC-1, which inactivates CDC-42 at cell contacts.
PMCID:3647442
PMID: 23424200
ISSN: 0021-9533
CID: 335472

An E-cadherin-mediated hitchhiking mechanism for C. elegans germ cell internalization during gastrulation

Chihara, Daisuke; Nance, Jeremy
Gastrulation movements place endodermal precursors, mesodermal precursors and primordial germ cells (PGCs) into the interior of the embryo. Somatic cell gastrulation movements are regulated by transcription factors that also control cell fate, coupling cell identity and position. By contrast, PGCs in many species are transcriptionally quiescent, suggesting that they might use alternative gastrulation strategies. Here, we show that C. elegans PGCs internalize by attaching to internal endodermal cells, which undergo morphogenetic movements that pull the PGCs into the embryo. We show that PGCs enrich HMR-1/E-cadherin at their surfaces to stick to endoderm. HMR-1 expression in PGCs is necessary and sufficient to ensure internalization, suggesting that HMR-1 can promote PGC-endoderm adhesion through a mechanism other than homotypic trans interactions between the two cell groups. Finally, we demonstrate that the hmr-1 3' untranslated region promotes increased HMR-1 translation in PGCs. Our findings reveal that quiescent PGCs employ a post-transcriptionally regulated hitchhiking mechanism to internalize during gastrulation, and demonstrate a morphogenetic role for the conserved association of PGCs with the endoderm.
PMCID:3383229
PMID: 22675206
ISSN: 0950-1991
CID: 170425

Adherens Junctions in C. elegans Embryonic Morphogenesis

Armenti, Stephen T; Nance, Jeremy
Caenorhabditis elegans provides a simplified, in vivo model system in which to study adherens junctions (AJs) and their role in morphogenesis. The core AJ components-HMR-1/E-cadherin, HMP-2/beta-catenin and HMP-1/alpha-catenin-were initially identified through genetic screens for mutants with body axis elongation defects. In early embryos, AJ proteins are found at sites of contact between blastomeres, and in epithelial cells AJ proteins localize to the multifaceted apical junction (CeAJ)-a single structure that combines the adhesive and barrier functions of vertebrate adherens and tight junctions. The apically localized polarity proteins PAR-3 and PAR-6 mediate formation and maturation of junctions, while the basolaterally localized regulator LET-413/Scribble ensures that junctions remain apically positioned. AJs promote robust adhesion between epithelial cells and provide mechanical resistance for the physical strains of morphogenesis. However, in contrast to vertebrates, C. elegans AJ proteins are not essential for general cell adhesion or for epithelial cell polarization. A combination of conserved and novel proteins localizes to the CeAJ and works together with AJ proteins to mediate adhesion.
PMCID:3633470
PMID: 22674076
ISSN: 0306-0225
CID: 169260

Elaborating polarity: PAR proteins and the cytoskeleton

Nance, Jeremy; Zallen, Jennifer A
Cell polarity is essential for cells to divide asymmetrically, form spatially restricted subcellular structures and participate in three-dimensional multicellular organization. PAR proteins are conserved polarity regulators that function by generating cortical landmarks that establish dynamic asymmetries in the distribution of effector proteins. Here, we review recent findings on the role of PAR proteins in cell polarity in C. elegans and Drosophila, and emphasize the links that exist between PAR networks and cytoskeletal proteins that both regulate PAR protein localization and act as downstream effectors to elaborate polarity within the cell
PMCID:3035085
PMID: 21303844
ISSN: 1477-9129
CID: 122697

PAR-3 mediates the initial clustering and apical localization of junction and polarity proteins during C. elegans intestinal epithelial cell polarization

Achilleos, Annita; Wehman, Ann M; Nance, Jeremy
The apicobasal polarity of epithelial cells is critical for organ morphogenesis and function, and loss of polarity can promote tumorigenesis. Most epithelial cells form when precursor cells receive a polarization cue, develop distinct apical and basolateral domains and assemble junctions near their apical surface. The scaffolding protein PAR-3 regulates epithelial cell polarity, but its cellular role in the transition from precursor cell to polarized epithelial cell has not been determined in vivo. Here, we use a targeted protein-degradation strategy to remove PAR-3 from C. elegans embryos and examine its cellular role as intestinal precursor cells become polarized epithelial cells. At initial stages of polarization, PAR-3 accumulates in cortical foci that contain E-cadherin, other adherens junction proteins, and the polarity proteins PAR-6 and PKC-3. Using live imaging, we show that PAR-3 foci move apically and cluster, and that PAR-3 is required to assemble E-cadherin into foci and for foci to accumulate at the apical surface. We propose that PAR-3 facilitates polarization by promoting the initial clustering of junction and polarity proteins that then travel and accumulate apically. Unexpectedly, superficial epidermal cells form apical junctions in the absence of PAR-3, and we show that PAR-6 has a PAR-3-independent role in these cells to promote apical junction maturation. These findings indicate that PAR-3 and PAR-6 function sequentially to position and mature apical junctions, and that the requirement for PAR-3 can vary in different types of epithelial cells
PMCID:2867319
PMID: 20431121
ISSN: 1477-9129
CID: 109676

Polarity and cell fate specification in the control of Caenorhabditis elegans gastrulation

Rohrschneider, Monica R; Nance, Jeremy
Gastrulation is a time during development when cells destined to produce internal tissues and organs move from the surface of the embryo into the interior. It is critical that the cell movements of gastrulation be precisely controlled, and coordinated with cell specification, in order for the embryo to develop normally. Caenorhabditis elegans gastrulation is relatively simple, can be observed easily in the transparent embryo, and can be manipulated genetically to uncover important regulatory mechanisms. Many of these cellular and molecular mechanisms, including cell shape, cytoskeletal, and cell cycle changes, appear to be conserved from flies to vertebrates. Here we review gastrulation in C. elegans, with an emphasis on recent data linking contact-induced cell polarity, PAR proteins, and cell fate specification to gastrulation control
PMCID:2929021
PMID: 19253398
ISSN: 1058-8388
CID: 98891

Polarization of the C. elegans embryo by RhoGAP-mediated exclusion of PAR-6 from cell contacts

Anderson, Dorian C; Gill, Jason S; Cinalli, Ryan M; Nance, Jeremy
Early embryos of some metazoans polarize radially to facilitate critical patterning events such as gastrulation and asymmetric cell division; however, little is known about how radial polarity is established. Early embryos of Caenorhabditis elegans polarize radially when cell contacts restrict the polarity protein PAR-6 to contact-free cell surfaces, where PAR-6 regulates gastrulation movements. We have identified a Rho guanosine triphosphatase activating protein (RhoGAP), PAC-1, which mediates C. elegans radial polarity and gastrulation by excluding PAR-6 from contacted cell surfaces. We show that PAC-1 is recruited to cell contacts, and we suggest that PAC-1 controls radial polarity by restricting active CDC-42 to contact-free surfaces, where CDC-42 binds and recruits PAR-6. Thus, PAC-1 provides a dynamic molecular link between cell contacts and PAR proteins that polarizes embryos radially
PMCID:2670547
PMID: 18583611
ISSN: 1095-9203
CID: 79469

PAR-6 is required for junction formation but not apicobasal polarization in C. elegans embryonic epithelial cells

Totong, Ronald; Achilleos, Annita; Nance, Jeremy
Epithelial cells perform important roles in the formation and function of organs and the genesis of many solid tumors. A distinguishing feature of epithelial cells is their apicobasal polarity and the presence of apical junctions that link cells together. The interacting proteins Par-6 (a PDZ and CRIB domain protein) and aPKC (an atypical protein kinase C) localize apically in fly and mammalian epithelial cells and are important for apicobasal polarity and junction formation. Caenorhabditis elegans PAR-6 and PKC-3/aPKC also localize apically in epithelial cells, but a role for these proteins in polarizing epithelial cells or forming junctions has not been described. Here, we use a targeted protein degradation strategy to remove both maternal and zygotic PAR-6 from C. elegans embryos before epithelial cells are born. We find that PKC-3 does not localize asymmetrically in epithelial cells lacking PAR-6, apical junctions are fragmented, and epithelial cells lose adhesion with one another. Surprisingly, junction proteins still localize apically, indicating that PAR-6 and asymmetric PKC-3 are not needed for epithelial cells to polarize. Thus, whereas the role of PAR-6 in junction formation appears to be widely conserved, PAR-6-independent mechanisms can be used to polarize epithelial cells
PMID: 17314130
ISSN: 0950-1991
CID: 72051

Gastrulation in C. elegans

Nance, Jeremy; Lee, Jen-Yi; Goldstein, Bob
Gastrulation is the process by which the germ layers become positioned in an embryo. C. elegans gastrulation serves as a model for studying the molecular mechanisms of diverse cellular and developmental phenomena, including morphogenesis, cell polarization, cell-cell signaling, actomyosin contraction and cell-cell adhesion. One distinct advantage of studying these phenomena in C. elegans is that genetic tools can be combined with high resolution live cell imaging and direct manipulations of the cells involved. Here we review what is known to date about the cellular and molecular mechanisms that function in C. elegans gastrulation
PMCID:4781589
PMID: 18050409
ISSN: 1551-8507
CID: 75715

PAR proteins and the establishment of cell polarity during C. elegans development

Nance, Jeremy
Cells become polarized to develop functional specializations and to distribute developmental determinants unequally during division. Studies that began in the nematode C. elegans have identified a group of largely conserved proteins, called PAR proteins, that play key roles in the polarization of many different cell types. During initial stages of cell polarization, certain PAR proteins become distributed asymmetrically along the cell cortex and subsequently direct the localization and/or activity of other proteins. Here I discuss recent findings on how PAR proteins become and remain asymmetric in three different contexts during C. elegans development: anterior-posterior polarization of the one-cell embryo, apicobasal polarization of non-epithelial early embryonic cells, and apicobasal polarization of epithelial cells. Although polarity within each of these cell types requires PAR proteins, the cues and regulators of PAR asymmetry can differ
PMID: 15666355
ISSN: 0265-9247
CID: 72052