Try a new search

Format these results:

Searched for:

name:philips, jennifer

school:SOM

Total Results:

24


Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism

Ouimet, Mireille; Koster, Stefan; Sakowski, Erik; Ramkhelawon, Bhama; van Solingen, Coen; Oldebeken, Scott; Karunakaran, Denuja; Portal-Celhay, Cynthia; Sheedy, Frederick J; Ray, Tathagat Dutta; Cecchini, Katharine; Zamore, Philip D; Rayner, Katey J; Marcel, Yves L; Philips, Jennifer A; Moore, Kathryn J
Mycobacterium tuberculosis (Mtb) survives in macrophages by evading delivery to the lysosome and promoting the accumulation of lipid bodies, which serve as a bacterial source of nutrients. We found that by inducing the microRNA (miRNA) miR-33 and its passenger strand miR-33*, Mtb inhibited integrated pathways involved in autophagy, lysosomal function and fatty acid oxidation to support bacterial replication. Silencing of miR-33 and miR-33* by genetic or pharmacological means promoted autophagy flux through derepression of key autophagy effectors (such as ATG5, ATG12, LC3B and LAMP1) and AMPK-dependent activation of the transcription factors FOXO3 and TFEB, which enhanced lipid catabolism and Mtb xenophagy. These data define a mammalian miRNA circuit used by Mtb to coordinately inhibit autophagy and reprogram host lipid metabolism to enable intracellular survival and persistence in the host.
PMCID:4873392
PMID: 27089382
ISSN: 1529-2916
CID: 2079882

Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence

Tufariello, JoAnn M; Chapman, Jessica R; Kerantzas, Christopher A; Wong, Ka-Wing; Vilcheze, Catherine; Jones, Christopher M; Cole, Laura E; Tinaztepe, Emir; Thompson, Victor; Fenyo, David; Niederweis, Michael; Ueberheide, Beatrix; Philips, Jennifer A; Jacobs, William R Jr
Mycobacterium tuberculosis (Mtb) encodes five type VII secretion systems (T7SS), designated ESX-1-ESX-5, that are critical for growth and pathogenesis. The best characterized is ESX-1, which profoundly impacts host cell interactions. In contrast, the ESX-3 T7SS is implicated in metal homeostasis, but efforts to define its function have been limited by an inability to recover deletion mutants. We overcame this impediment using medium supplemented with various iron complexes to recover mutants with deletions encompassing select genes within esx-3 or the entire operon. The esx-3 mutants were defective in uptake of siderophore-bound iron and dramatically accumulated cell-associated mycobactin siderophores. Proteomic analyses of culture filtrate revealed that secretion of EsxG and EsxH was codependent and that EsxG-EsxH also facilitated secretion of several members of the proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) protein families (named for conserved PE and PPE N-terminal motifs). Substrates that depended on EsxG-EsxH for secretion included PE5, encoded within the esx-3 locus, and the evolutionarily related PE15-PPE20 encoded outside the esx-3 locus. In vivo characterization of the mutants unexpectedly showed that the ESX-3 secretion system plays both iron-dependent and -independent roles in Mtb pathogenesis. PE5-PPE4 was found to be critical for the siderophore-mediated iron-acquisition functions of ESX-3. The importance of this iron-acquisition function was dependent upon host genotype, suggesting a role for ESX-3 secretion in counteracting host defense mechanisms that restrict iron availability. Further, we demonstrate that the ESX-3 T7SS secretes certain effectors that are important for iron uptake while additional secreted effectors modulate virulence in an iron-independent fashion.
PMCID:4725510
PMID: 26729876
ISSN: 1091-6490
CID: 1901092

Ca2+ Signaling but Not Store-Operated Ca2+ Entry Is Required for the Function of Macrophages and Dendritic Cells

Vaeth, Martin; Zee, Isabelle; Concepcion, Axel R; Maus, Mate; Shaw, Patrick; Portal-Celhay, Cynthia; Zahra, Aleena; Kozhaya, Lina; Weidinger, Carl; Philips, Jennifer; Unutmaz, Derya; Feske, Stefan
Store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels is essential for immunity to infection. CRAC channels are formed by ORAI1 proteins in the plasma membrane and activated by stromal interaction molecule (STIM)1 and STIM2 in the endoplasmic reticulum. Mutations in ORAI1 and STIM1 genes that abolish SOCE cause severe immunodeficiency with recurrent infections due to impaired T cell function. SOCE has also been observed in cells of the innate immune system such as macrophages and dendritic cells (DCs) and may provide Ca2+ signals required for their function. The specific role of SOCE in macrophage and DC function, as well as its contribution to innate immunity, however, is not well defined. We found that nonselective inhibition of Ca2+ signaling strongly impairs many effector functions of bone marrow-derived macrophages and bone marrow-derived DCs, including phagocytosis, inflammasome activation, and priming of T cells. Surprisingly, however, macrophages and DCs from mice with conditional deletion of Stim1 and Stim2 genes, and therefore complete inhibition of SOCE, showed no major functional defects. Their differentiation, FcR-dependent and -independent phagocytosis, phagolysosome fusion, cytokine production, NLRP3 inflammasome activation, and their ability to present Ags to activate T cells were preserved. Our findings demonstrate that STIM1, STIM2, and SOCE are dispensable for many critical effector functions of macrophages and DCs, which has important implications for CRAC channel inhibition as a therapeutic strategy to suppress pathogenic T cells while not interfering with myeloid cell functions required for innate immunity.
PMCID:4506881
PMID: 26109647
ISSN: 1550-6606
CID: 1640972

Ubiquilin 1 Promotes IFN-gamma-Induced Xenophagy of Mycobacterium tuberculosis

Sakowski, Erik T; Koster, Stefan; Portal Celhay, Cynthia; Park, Heidi S; Shrestha, Elina; Hetzenecker, Stefanie E; Maurer, Katie; Cadwell, Ken; Philips, Jennifer A
The success of Mycobacterium tuberculosis (Mtb) as a pathogen rests upon its ability to grow intracellularly in macrophages. Interferon-gamma (IFN-gamma) is critical in host defense against Mtb and stimulates macrophage clearance of Mtb through an autophagy pathway. Here we show that the host protein ubiquilin 1 (UBQLN1) promotes IFN-gamma-mediated autophagic clearance of Mtb. Ubiquilin family members have previously been shown to recognize proteins that aggregate in neurodegenerative disorders. We find that UBQLN1 can interact with Mtb surface proteins and associates with the bacilli in vitro. In IFN-gamma activated macrophages, UBQLN1 co-localizes with Mtb and promotes the anti-mycobacterial activity of IFN-gamma. The association of UBQLN1 with Mtb depends upon the secreted bacterial protein, EsxA, which is involved in permeabilizing host phagosomes. In autophagy-deficient macrophages, UBQLN1 accumulates around Mtb, consistent with the idea that it marks bacilli that traffic through the autophagy pathway. Moreover, UBQLN1 promotes ubiquitin, p62, and LC3 accumulation around Mtb, acting independently of the E3 ligase parkin. In summary, we propose a model in which UBQLN1 recognizes Mtb and in turn recruits the autophagy machinery thereby promoting intracellular control of Mtb. Thus, polymorphisms in ubiquilins, which are known to influence susceptibility to neurodegenerative illnesses, might also play a role in host defense against Mtb.
PMCID:4520715
PMID: 26225865
ISSN: 1553-7374
CID: 1698572

Introduction to Bacteria and Bacterial Diseases

Chapter by: Philips, Jennifer A; Blaser, Martin J
in: Mandell, Douglas, and Bennett's principles and practice of infectious diseases by Bennett, John E; Dolin, Raphael; Blaser, Martin J [Eds]
Philadelphia, PA : Elsevier/Saunders, 2015
pp. 2234-2236
ISBN: 9780323263733
CID: 1687812

Analysis of Mycobacterial Protein Secretion

Mehra, Alka; Philips, Jennifer A
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis. Analysis of proteins secreted by Mtb has been of interest to the field of tuberculosis research since certain secreted proteins interact with the host to promote virulence, while others may be important antigens or serve as biomarkers of infection. Here, we describe a protocol to prepare whole cell extracts (WCE) and short term culture filtrate (CF) from Mtb or the vaccine strain Mycobacterium bovis- bacillus Calmatte- Guérin (BCG) (Mehra et al., 2013). These are both slow growing mycobacteria, but the same basic procedure can easily be adapted to analyze secreted proteins from rapidly growing mycobacteria, such as Mycobacterium smegmatis (Msmeg), a non-pathogenic species commonly used in the laboratory. The fractions obtained can be analyzed by western blotting to examine proteins of interest or by mass spectrometry if antibodies are not available or to examine the entire secretome. Genetic knockout mutants for the gene of interest serve as a negative control. Additionally, levels of a cytosolic protein such as the chaperone GroEL or the pyruvate dehydrogenase E2 component sucB (Rv2215/dlaT) should be assessed in the CF fraction to rule out the possibility that a positive signal in CF is due to bacterial lysis (see Figure 1). By varying the growth conditions of the strain, this in vitro secretion assay can be used to examine conditions that alter the secretome. We are thankful to Magnus Stiegedal for helpful tips on TCA (trichloroacetic acid) precipitation.
PMCID:5903457
PMID: 29675445
ISSN: 2331-8325
CID: 3042812

Mycobacterial Esx-3 requires multiple components for iron acquisition

Siegrist, M Sloan; Steigedal, Magnus; Ahmad, Rushdy; Mehra, Alka; Dragset, Marte S; Schuster, Brian M; Philips, Jennifer A; Carr, Steven A; Rubin, Eric J
ABSTRACT The type VII secretion systems are conserved across mycobacterial species and in many Gram-positive bacteria. While the well-characterized Esx-1 pathway is required for the virulence of pathogenic mycobacteria and conjugation in the model organism Mycobacterium smegmatis, Esx-3 contributes to mycobactin-mediated iron acquisition in these bacteria. Here we show that several Esx-3 components are individually required for function under low-iron conditions but that at least one, the membrane-bound protease MycP3 of M. smegmatis, is partially expendable. All of the esx-3 mutants tested, including the ΔmycP3ms mutant, failed to export the native Esx-3 substrates EsxHms and EsxGms to quantifiable levels, as determined by targeted mass spectrometry. Although we were able to restore low-iron growth to the esx-3 mutants by genetic complementation, we found a wide range of complementation levels for protein export. Indeed, minute quantities of extracellular EsxHms and EsxGms were sufficient for iron acquisition under our experimental conditions. The apparent separation of Esx-3 function in iron acquisition from robust EsxGms and EsxHms secretion in the ΔmycP3ms mutant and in some of the complemented esx-3 mutants compels reexamination of the structure-function relationships for type VII secretion systems. IMPORTANCE Mycobacteria have several paralogous type VII secretion systems, Esx-1 through Esx-5. Whereas Esx-1 is required for pathogenic mycobacteria to grow within an infected host, Esx-3 is essential for growth in vitro. We and others have shown that Esx-3 is required for siderophore-mediated iron acquisition. In this work, we identify individual Esx-3 components that contribute to this process. As in the Esx-1 system, most mutations that abolish Esx-3 protein export also disrupt its function. Unexpectedly, however, ultrasensitive quantitation of Esx-3 secretion by multiple-reaction-monitoring mass spectrometry (MRM-MS) revealed that very low levels of export were sufficient for iron acquisition under similar conditions. Although protein export clearly contributes to type VII function, the relationship is not absolute.
PMCID:4010830
PMID: 24803520
ISSN: 2150-7511
CID: 4707472

Mycobacterium tuberculosis Type VII Secreted Effector EsxH Targets Host ESCRT to Impair Trafficking

Mehra, Alka; Zahra, Aleena; Thompson, Victor; Sirisaengtaksin, Natalie; Wells, Ashley; Porto, Maura; Koster, Stefan; Penberthy, Kristen; Kubota, Yoshihisha; Dricot, Amelie; Rogan, Daniel; Vidal, Marc; Hill, David E; Bean, Andrew J; Philips, Jennifer A
Mycobacterium tuberculosis (Mtb) disrupts anti-microbial pathways of macrophages, cells that normally kill bacteria. Over 40 years ago, D'Arcy Hart showed that Mtb avoids delivery to lysosomes, but the molecular mechanisms that allow Mtb to elude lysosomal degradation are poorly understood. Specialized secretion systems are often used by bacterial pathogens to translocate effectors that target the host, and Mtb encodes type VII secretion systems (TSSSs) that enable mycobacteria to secrete proteins across their complex cell envelope; however, their cellular targets are unknown. Here, we describe a systematic strategy to identify bacterial virulence factors by looking for interactions between the Mtb secretome and host proteins using a high throughput, high stringency, yeast two-hybrid (Y2H) platform. Using this approach we identified an interaction between EsxH, which is secreted by the Esx-3 TSSS, and human hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs/Hrs), a component of the endosomal sorting complex required for transport (ESCRT). ESCRT has a well-described role in directing proteins destined for lysosomal degradation into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs), ensuring degradation of the sorted cargo upon MVB-lysosome fusion. Here, we show that ESCRT is required to deliver Mtb to the lysosome and to restrict intracellular bacterial growth. Further, EsxH, in complex with EsxG, disrupts ESCRT function and impairs phagosome maturation. Thus, we demonstrate a role for a TSSS and the host ESCRT machinery in one of the central features of tuberculosis pathogenesis.
PMCID:3814348
PMID: 24204276
ISSN: 1553-7366
CID: 626852

Autophagy meets phagocytosis

Cadwell, Ken; Philips, Jennifer A
Autophagy can degrade intracellular bacteria, but how this pathway contributes to phagocytosis is unclear. In this issue of Immunity, Bonilla et al. (2013) demonstrate an additional role for autophagy in Mycobacterium tuberculosis internalization by macrophages.
PMID: 24054324
ISSN: 1074-7613
CID: 542812

Directly observing therapy: a new view of drug tolerance in tuberculosis

Philips, Jennifer A; Ernst, Joel D
Drug tolerance in bacteria is widely believed to be due to metabolic changes that accompany growth arrest. A study in this issue of Cell reveals a drug tolerance mechanism in replicating mycobacteria that is induced by residence in macrophages and depends on drug efflux
PMID: 21458661
ISSN: 1097-4172
CID: 130308