Try a new search

Format these results:

Searched for:

person:jah12

Total Results:

55


Diet and Genetics: Trp-ing Over Food Sensitivity

Hubbard, E Jane Albert
Laboratory-reared Caenorhabditis elegans eat Escherichia coli. A new study demonstrates a strong diet-gene interaction: worms with reduced nhr-114 activity are fertile when fed E. coli K-12 strains but are sterile on E. coli B. Surprisingly, tryptophan supplementation of E. coli B restores worm fertility.
PMID: 23618671
ISSN: 0960-9822
CID: 316062

Physiological control of germline development

Hubbard, E Jane Albert; Korta, Dorota Z; Dalfo, Diana
The intersection between developmental programs and environmental conditions that alter physiology is a growing area of research interest. The C. elegans germ line is emerging as a particularly sensitive and powerful model for these studies. The germ line is subject to environmentally regulated diapause points that allow worms to withstand harsh conditions both prior to and after reproduction commences. It also responds to more subtle changes in physiological conditions. Recent studies demonstrate that different aspects of germ line development are sensitive to environmental and physiological changes and that conserved signaling pathways such as the AMPK, Insulin/IGF, TGFbeta, and TOR-S6K, and nuclear hormone receptor pathways mediate this sensitivity. Some of these pathways genetically interact with but appear distinct from previously characterized mechanisms of germline cell fate control such as Notch signaling. Here, we review several aspects of hermaphrodite germline development in the context of "feasting," "food-limited," and "fasting" conditions. We also consider connections between lifespan, metabolism and the germ line, and we comment on special considerations for examining germline development under altered environmental and physiological conditions. Finally, we summarize the major outstanding questions in the field.
PMCID:3760422
PMID: 22872476
ISSN: 0065-2598
CID: 174356

Sensory Regulation of the C. elegans Germline through TGF-beta-Dependent Signaling in the Niche

Dalfo, Diana; Michaelson, David; Hubbard, E Jane Albert
The proliferation/differentiation balance of stem and progenitor cell populations must respond to the physiological needs of the organism [1, 2]. Mechanisms underlying this plasticity are not well understood. The C. elegans germline provides a tractable system to study the influence of the environment on progenitor cells (stem cells and their proliferative progeny). Germline progenitors accumulate during larval stages to form an adult pool from which gametes are produced. Notch pathway signaling from the distal tip cell (DTC) niche to the germline maintains the progenitor pool [3-5], and the larval germline cell cycle is boosted by insulin/IGF-like receptor signaling [6]. Here we show that, independent of its role in the dauer decision, TGF-beta regulates the balance of proliferation versus differentiation in the C. elegans germline in response to sensory cues that report population density and food abundance. Ciliated ASI sensory neurons are required for TGF-beta-mediated expansion of the larval germline progenitor pool, and the TGF-beta receptor pathway acts in the germline stem cell niche. TGF-beta signaling thereby couples germline development to the quality of the environment, providing a novel cellular and molecular mechanism linking sensory experience of the environment to reproduction.
PMCID:3633564
PMID: 22483938
ISSN: 0960-9822
CID: 166510

S6K links cell fate, cell cycle and nutrient response in C. elegans germline stem/progenitor cells

Korta, Dorota Z; Tuck, Simon; Hubbard, E Jane Albert
Coupling of stem/progenitor cell proliferation and differentiation to organismal physiological demands ensures the proper growth and homeostasis of tissues. However, in vivo mechanisms underlying this control are poorly characterized. We investigated the role of ribosomal protein S6 kinase (S6K) at the intersection of nutrition and the establishment of a stem/progenitor cell population using the C. elegans germ line as a model. We find that rsks-1 (which encodes the worm homolog of mammalian p70S6K) is required germline-autonomously for proper establishment of the germline progenitor pool. In the germ line, rsks-1 promotes cell cycle progression and inhibits larval progenitor differentiation, promotes growth of adult tumors and requires a conserved TOR phosphorylation site. Loss of rsks-1 and ife-1 (eIF4E) together reduces the germline progenitor pool more severely than either single mutant and similarly to reducing the activity of let-363 (TOR) or daf-15 (RAPTOR). Moreover, rsks-1 acts in parallel with the glp-1 (Notch) and daf-2 (insulin-IGF receptor) pathways, and does not share the same genetic dependencies with its role in lifespan control. We show that overall dietary restriction and amino acid deprivation cause germline defects similar to a subset of rsks-1 mutant phenotypes. Consistent with a link between diet and germline proliferation via rsks-1, loss of rsks-1 renders the germ line largely insensitive to the effects of dietary restriction. Our studies establish the C. elegans germ line as an in vivo model to understand TOR-S6K signaling in proliferation and differentiation and suggest that this pathway is a key nutrient-responsive regulator of germline progenitors.
PMCID:3274352
PMID: 22278922
ISSN: 0950-1991
CID: 157757

A model of stem cell population dynamics: in silico analysis and in vivo validation

Setty, Yaki; Dalfó, Diana; Korta, Dorota Z; Hubbard, E Jane Albert; Kugler, Hillel
The proper renewal and maintenance of tissues by stem cell populations is simultaneously influenced by anatomical constraints, cell proliferation dynamics and cell fate specification. However, their relative influence is difficult to examine in vivo. To address this difficulty we built, as a test case, a cell-centered state-based computational model of key behaviors that govern germline development in C. elegans, and used it to drive simulations of cell population dynamics under a variety of perturbations. Our analysis provided unexpected possible explanations for laboratory observations, including certain 'all-or-none' phenotypes and complex differentiation patterns. The simulations also offered insights into niche-association dynamics and the interplay between cell cycle and cell fate. Subsequent experiments validated several predictions generated by the simulations. Notably, we found that early cell cycle defects influence later maintenance of the progenitor cell population. This general modeling approach is potentially applicable to other stem cell systems.
PMCID:3231771
PMID: 22147952
ISSN: 1477-9129
CID: 4049492

Insulin and germline proliferation in Caenorhabditis elegans

Hubbard, E Jane Albert
Germline proliferation in Caenorhabditis elegans is emerging as a compelling model system for understanding the molecular basis for the developmental and physiological control of cell proliferation. This review covers the discovery and implications of the role of the insulin/IGF-like signaling pathway in germline proliferation during germline development. This pathway plays a host of important roles in C. elegans biology. Its role in germline proliferation is important to generate the proper adult stem/progenitor population and to ensure optimal fecundity. Moreover, in this role, it is restricted to reproductive (as opposed to dauer) larval stages and impinges on the G2 of the cell cycle. Two putative insulin ligands are especially important for the germline role but do not mediate signaling in other tissues. A picture is emerging of a complex web of developmentally and temporally restricted, ligand- and tissue-specific responses to insulin signaling. Avenues for future studies include the regulation of specific insulin-like ligands and the mechanisms for tissue-specific responses to them
PMCID:3760421
PMID: 22127237
ISSN: 0083-6729
CID: 149799

Soma-germline interactions that influence germline proliferation in Caenorhabditis elegans

Korta, Dorota Z; Hubbard, E Jane Albert
Caenorhabditis elegans boasts a short lifecycle and high fecundity, two features that make it an attractive and powerful genetic model organism. Several recent studies indicate that germline proliferation, a prerequisite to optimal fecundity, is tightly controlled over the course of development. Cell proliferation control includes regulation of competence to proliferate, a poorly understood aspect of cell fate specification, as well as cell-cycle control. Furthermore, dynamic regulation of cell proliferation occurs in response to multiple external signals. The C. elegans germ line is proving a valuable model for linking genetic, developmental, systemic, and environmental control of cell proliferation. Here, we consider recent studies that contribute to our understanding of germ cell proliferation in C. elegans. We focus primarily on somatic control of germline proliferation, how it differs at different life stages, and how it can be altered in the context of the life cycle and changes in environmental status
PMCID:3323287
PMID: 20225254
ISSN: 1097-0177
CID: 109513

Insulin signaling promotes germline proliferation in C. elegans

Michaelson, David; Korta, Dorota Z; Capua, Yossi; Hubbard, E Jane Albert
Cell proliferation must be coordinated with cell fate specification during development, yet interactions among pathways that control these two critical aspects of development are not well understood. The coordination of cell fate specification and proliferation is particularly crucial during early germline development, when it impacts the establishment of stem/progenitor cell populations and ultimately the production of gametes. In C. elegans, insulin/IGF-like receptor (IIR) signaling has been implicated in fertility, but the basis for the fertility defect had not been previously characterized. We found that IIR signaling is required for robust larval germline proliferation, separate from its well-characterized role in preventing dauer entry. IIR signaling stimulates the larval germline cell cycle. This activity is distinct from Notch signaling, occurs in a predominantly germline-autonomous manner, and responds to somatic activity of ins-3 and ins-33, genes that encode putative insulin-like ligands. IIR signaling in this role acts through the canonical PI3K pathway, inhibiting DAF-16/FOXO. However, signaling from these ligands does not inhibit daf-16 in neurons nor in the intestine, two tissues previously implicated in other IIR roles. Our data are consistent with a model in which: (1) under replete reproductive conditions, the larval germline responds to insulin signaling to ensure robust germline proliferation that builds up the germline stem cell population; and (2) distinct insulin-like ligands contribute to different phenotypes by acting on IIR signaling in different tissues
PMCID:2827619
PMID: 20110332
ISSN: 0950-1991
CID: 106506

A "latent niche" mechanism for tumor initiation

McGovern, Marie; Voutev, Roumen; Maciejowski, John; Corsi, Ann K; Hubbard, E Jane Albert
Stem cells, their niches, and their relationship to cancer are under intense investigation. Because tumors and metastases acquire self-renewing capacity, mechanisms for their establishment may involve cell-cell interactions similar to those between stem cells and stem cell niches. On the basis of our studies in Caenorhabditis elegans, we introduce the concept of a 'latent niche' as a differentiated cell type that does not normally contact stem cells nor act as a niche but that can, under certain conditions, promote the ectopic self-renewal, proliferation, or survival of competent cells that it inappropriately contacts. Here, we show that ectopic germ-line stem cell proliferation in C. elegans is driven by a latent niche mechanism and that the molecular basis for this mechanism is inappropriate Notch activation. Furthermore, we show that continuous Notch signaling is required to maintain ectopic germ-line proliferation. We highlight the latent niche concept by distinguishing it from a normal stem cell niche, a premetastatic niche and an ectopic niche. One of the important distinguishing features of this mechanism for tumor initiation is that it could operate in the absence of genetic changes to the tumor cell or the tumor-promoting cell. We propose that a latent niche mechanism may underlie tumorigenesis and metastasis in humans
PMCID:2710656
PMID: 19564624
ISSN: 1091-6490
CID: 101120

MSP and GLP-1/Notch signaling coordinately regulate actomyosin-dependent cytoplasmic streaming and oocyte growth in C. elegans

Nadarajan, Saravanapriah; Govindan, J Amaranath; McGovern, Marie; Hubbard, E Jane Albert; Greenstein, David
Fertility depends on germline stem cell proliferation, meiosis and gametogenesis, yet how these key transitions are coordinated is unclear. In C. elegans, we show that GLP-1/Notch signaling functions in the germline to modulate oocyte growth when sperm are available for fertilization and the major sperm protein (MSP) hormone is present. Reduction-of-function mutations in glp-1 cause oocytes to grow abnormally large when MSP is present and Galpha(s)-adenylate cyclase signaling in the gonadal sheath cells is active. By contrast, gain-of-function glp-1 mutations lead to the production of small oocytes. Surprisingly, proper oocyte growth depends on distal tip cell signaling involving the redundant function of GLP-1 ligands LAG-2 and APX-1. GLP-1 signaling also affects two cellular oocyte growth processes, actomyosin-dependent cytoplasmic streaming and oocyte cellularization. glp-1 reduction-of-function mutants exhibit elevated rates of cytoplasmic streaming and delayed cellularization. GLP-1 signaling in oocyte growth depends in part on the downstream function of the FBF-1/2 PUF RNA-binding proteins. Furthermore, abnormal oocyte growth in glp-1 mutants, but not the inappropriate differentiation of germline stem cells, requires the function of the cell death pathway. The data support a model in which GLP-1 function in MSP-dependent oocyte growth is separable from its role in the proliferation versus meiotic entry decision. Thus, two major germline signaling centers, distal GLP-1 activation and proximal MSP signaling, coordinate several spatially and temporally distinct processes by which germline stem cells differentiate into functional oocytes
PMCID:2729341
PMID: 19502484
ISSN: 0950-1991
CID: 104921