Try a new search

Format these results:

Searched for:

person:jmn5

Total Results:

40


Assessment of Root Position and Morphology by Cone Beam Computed Tomography

Chapter by: Nervina, Jeanne M.; Kapila, Sunil D.
in: Cone Beam Computed Tomography in Orthodontics: Indications, Insights, and Innovations by
[S.l.] : Wiley Blackwell, 2014
pp. 317-348
ISBN: 9781118448489
CID: 2854292

Assessment of Maxillary Transverse Deficiency and Treatment Outcomes by Cone Beam Computed Tomography

Chapter by: Nervina, Jeanne M.; Kapila, Sunil D.; Flores-Mir, Carlos
in: Cone Beam Computed Tomography in Orthodontics: Indications, Insights, and Innovations by
[S.l.] : Wiley Blackwell, 2014
pp. 383-409
ISBN: 9781118448489
CID: 2854282

Skeletal and soft-tissue incidental findings on cone-beam computed tomography images [Case Report]

Barghan, Sevin; Tetradis, Sotirios; Nervina, Jeanne M
Cone-beam computed tomography provides orthodontists with 3-dimensional images of the craniofacial region and valuable information for diagnosis and treatment planning of craniofacial or dental anomalies. However, a narrow focus on the skeletal and dental contributions to malocclusion can cause failure to identify skeletal or soft-tissue pathologies of the craniofacial structures unrelated to the orthodontic concerns. Two cases are presented that demonstrate skeletal and soft-tissue anomalies identified as incidental findings on cone-beam computed tomography scans of asymptomatic orthodontics patients. One patient was diagnosed with craniofacial fibrous dysplasia; the other had an intrahemispheric lipoma. Their cone-beam computed tomography images are presented, along with a literature review on their pathologies.
PMID: 23726339
ISSN: 0889-5406
CID: 1318612

Cone beam computed tomography use in orthodontics

Nervina, J M
Cone beam computed tomography (CBCT) is widely used by orthodontists to obtain three-dimensional (3-D) images of their patients. This is of value as malocclusion results from discrepancies in three planes of space. This review tracks the use of CBCT in orthodontics, from its validation as an accurate and reliable tool, to its use in diagnosing and treatment planning, and in assessing treatment outcomes in orthodontics.
PMID: 22376101
ISSN: 1834-7819
CID: 2736972

Regulation of Nur77 gene expression by prostanoids in cementoblastic cells

Moldovan, Sanda M; Nervina, Jeanne M; Tetradis, Sotirios; Camargo, Paulo M
OBJECTIVE: The inflammatory cytokine interleukin-1 (IL-1) decreases mineralisation by immortalized mouse-derived cementoblastic cells (OC-CM cells), whilst various prostanoids, including fluprostenol (flup) increase it. Subtraction hybridisation conducted on flup minus IL-1-treated OC-CM cells revealed that one of the primary response genes preferentially induced by flup is the transcription factor Nur77. The objective of this study was to examine the signal transduction cascades regulating prostanoid induction of Nur77 gene expression in OC-CM cells. METHODS: Confluent OC-CM cells were treated with prostaglandin E(2) (PGE(2)), prostaglandin F(2alpha) (PGF(2alpha)), specific activators of the various EP prostanoid receptors and of the FP prostanoid receptor, and direct activators/inhibitors of the cyclic AMP-protein kinase A (PKA), protein kinase C (PKC) and intracellular calcium pathways. Nur77 gene expression was examined by mRNA extraction and Northern blot analysis. RESULTS: PGE(2) and PGF(2alpha) treatment of OC-CM cells significantly increased Nur77 mRNA expression in a time- and dose-dependent fashion. Both the EP1 prostanoid receptor-specific activator 16,16-dimethyl-PGE(2) and the FP prostanoid receptor-specific activator flup significantly increased Nur77 gene expression by OC-CM cells as compared to vehicle-treated controls. Increase in Nur77 gene expression was also observed when direct activators of the PKA, PKC and intracellular calcium pathways were used to treat OC-CM cells. Direct inhibition of the PKA, PKC and intracellular calcium pathways abrogated Nur77 gene expression induced by OC-CM cell treatment with PGE(2) and PGF(2alpha). CONCLUSION: Nur77 is a primary gene expressed by OC-CM cells and its induction appears to be mediated by the PKA, PKC and intracellular calcium pathways. Nur77 may affect expression of downstream target genes in OC-CM cells and partially regulate cementoblast cell function.
PMCID:2667873
PMID: 19237150
ISSN: 0003-9969
CID: 1318622

Nuclear receptor profile in calvarial bone cells undergoing osteogenic versus adipogenic differentiation

Pirih, Flavia Q; Abayahoudian, Rosette; Elashoff, David; Parhami, Farhad; Nervina, Jeanne M; Tetradis, Sotirios
Nuclear receptors (NRs) are key regulators of cell function and differentiation. We examined NR expression during osteogenic versus adipogenic differentiation of primary mouse calvarial osteoblasts (MOBs). MOBs were cultured for 21 days in osteogenic or adipogenic differentiation media. von Kossa and Oil Red O staining, and qRT-PCR of marker genes and 49 NRs were performed. PCR amplicons were subcloned to establish correct sequences and absolute standard curves. Forty-three NRs were detected at days 0-21. Uncentered average linkage hierarchical clustering identified four expression clusters: NRs (1) upregulated during osteogenic, but not adipogenic, differentiation, (2) upregulated in both conditions, with greater upregulation during adipogenic differentiation, (3) upregulated equally in both conditions, (4) downregulated during adipogenic, but not osteogenic, differentiation. One-way ANOVA with contrast revealed 20 NRs upregulated during osteogenic differentiation and 12 NRs upregulated during adipogenic differentiation. Two-way ANOVA demonstrated that 18 NRs were higher in osteogenic media, while 9 NRs were higher in adipogenic media. The time effect revealed 16 upregulated NRs. The interaction of condition with time revealed 6 NRs with higher expression rate during adipogenic differentiation and 3 NRs with higher expression rate during osteogenic differentiation. Relative NR abundance at days 0 and 21 were ranked. Basal ranking changed at least 5 positions for 13 NRs in osteogenic media and 9 NRs in adipogenic media. Osteogenic and adipogenic differentiation significantly altered NR expression in MOBs. These differences offer a fingerprint of cellular commitment and may provide clues to the underlying mechanisms of osteogenic versus adipogenic differentiation.
PMCID:5391254
PMID: 18810760
ISSN: 0730-2312
CID: 1318632

Prostanoids induce egr1 gene expression in cementoblastic OCCM cells

Pham, L; Bezouglaia, O; Camargo, P M; Nervina, J M; Tetradis, S
BACKGROUND AND OBJECTIVE/OBJECTIVE:Prostanoids that activate protein kinase C signaling are potent anabolic stimulators of cementoblastic OCCM cells. Using cDNA subtractive hybridization, we identified early growth response gene-1 (egr1) as a prostanoid-induced gene. Egr1, a zinc-finger transcription factor expressed during tooth development, regulates cell growth and differentiation. We hypothesize that Egr1 may mediate part of the prostanoid-induced anabolic effect in cementoblasts. Our objective was to characterize prostanoid-induced egr1 gene expression in OCCM cells. MATERIAL AND METHODS/METHODS:Total RNA and proteins were assayed by northern blot and western immunoblot assays. RESULTS:Prostaglandin E2-, prostaglandin F2alpha- and fluprostenol-induced egr1 mRNA levels peaked at 0.5 h and returned to baseline by 4 h. Prostaglandin F2alpha and fluprostenol more potently induced egr1 compared with prostaglandin E2. The phorbol ester, phorbol 12-myristate 13-acetate, which activates protein kinase C signaling, induced egr1 mRNA levels 66-fold over the control, whereas forskolin (a cAMP-protein kinase A activator) and ionomycin (a calcium activator) had no effect. Protein kinase C inhibition significantly inhibited prostaglandin E2-, prostaglandin F2alpha- and fluprostenol-induced egr1 mRNA levels. Finally, prostanoids maximally induced Egr1 protein at 1 h. CONCLUSION/CONCLUSIONS:egr1 is a primary response gene induced by prostaglandin E2, prostaglandin F2alpha and fluprostenol in OCCM cells through protein kinase C signaling, suggesting that Egr1 may be a key mediator of anabolic responses in cementoblasts. Cementum is vital for periodontal organ maintenance and regeneration. Periodontal ligament fibers (Sharpey's fibers) insert into bone and cementum, thereby supporting the tooth in the alveolus (1). If the periodontal organ is lost, its regeneration requires cementoblast differentiation in order to form new cementum for periodontal ligament fiber insertion. Early attempts to regenerate cementum have proven difficult and rarely generate sufficient tissue (2). A better understanding of the molecular and cellular regulators that promote cementoblast differentiation is critical for developing targeted periodontal regeneration.
PMID: 17760827
ISSN: 0022-3484
CID: 3140332

PGC-1alpha is induced by parathyroid hormone and coactivates Nurr1-mediated promoter activity in osteoblasts

Nervina, Jeanne M; Magyar, Clara E; Pirih, Flavia Q; Tetradis, Sotirios
Parathyroid hormone (PTH) potently activates cAMP-protein kinase A (PKA)-driven molecular cascades in osteoblasts. The NR4A/NGFI-B orphan nuclear receptor (NR) Nurr1 is a PTH-induced, cAMP-responsive primary response gene (PRG) that transactivates osteocalcin (Ocn) expression through a putative NGFI-B response element (NBRE) in the proximal promoter. As a true orphan NR, Nurr1's expression level and coactivator recruitment regulate its transactivation capacity. We postulated that Nurr1's induction through cAMP-PKA signaling might favor a coactivator that is likewise cAMP-dependent. A possible candidate is the cAMP-inducible coactivator PPARgamma coactivator-1alpha (PGC-1alpha). We hypothesize that PGC-1alpha is a PTH-induced PRG that synergizes with Nurr1 to induce target gene transcription in osteoblasts. We show that 10 nM PTH for 2 h maximally induced PGC-1alpha mRNA in primary mouse osteoblasts (MOBs) and calvariae. Selective signaling agonists and antagonists demonstrated that PTH induced PGC-1alpha mRNA primarily through the cAMP-PKA pathway. Protein synthesis inhibition sustained PTH-induced PGC-1alpha expression. PGC-1alpha enhanced Nurr1-induced transactivation of a consensus 3xNBRE-luciferase construct and the rat (-1050)Ocn promoter-luciferase construct from 3.7- to 9.6- and 10.1-fold, respectively. This synergy required Nurr1-DNA binding, since a mutation of the Ocn promoter NBRE abolished both Nurr1- and Nurr1-PGC-1alpha-induced transactivation. Using GST pull-down assays, PGC-1alpha directly interacted with in vitro-generated and nuclear Nurr1. We conclude that PGC-1alpha is a PTH-induced, cAMP-dependent PRG that directly synergizes with Nurr1 to transactivate target genes in osteoblasts. Taken together with published data, our findings suggest that Nurr1 and PGC-1alpha may be pivotal mediators of cAMP-induced osteoblast gene expression and osteoblast function.
PMID: 16765661
ISSN: 1873-2763
CID: 1318642

Prostanoid- and interleukin-1-induced primary genes in cementoblastic cells

Nervina, Jeanne M; Camargo, Paulo M; Bezouglaia, Olga; Tetradis, Sotirios
BACKGROUND: Cementum is a key component of a functional periodontal organ. However, regenerating lost cementum is difficult and often incomplete. Identifying molecular mediators of cementoblast differentiation and function should lead to better targeted treatment for periodontitis. Prostaglandins increase mineralization of murine cementoblastic OCCM cells and alveolar bone formation, whereas the cytokine interleukin-1 (IL-1) inhibits alveolar bone formation. We hypothesized that differentially induced primary genes in OCCM cells may mediate anabolic and catabolic responses. Our objective was to identify primary genes differentially induced by the synthetic prostanoid fluprostenol and IL-1 in cementoblastic cells. METHODS: Confluent OCCM cells were pretreated with the protein synthesis inhibitor cycloheximide followed by fluprostenol or IL-1 for 1.5 hours. cDNA generated from each group was used for cDNA subtraction hybridization to identify differentially induced genes. Preferential gene induction was verified by Northern blot analysis. RESULTS: Thirteen fluprostenol- and seven IL-1-regulated genes were identified. Among the fluprostenol-induced genes was mitogen-activated protein (MAP) kinase phosphatase 1 (MKP1), a negative regulator of MAP kinase signaling. To verify the cDNA subtraction hybridization results, OCCM cells were treated with fluprostenol or prostaglandin F2 (PGF2), and MKP1 mRNA levels were determined. The 0.001 to 1 microM fluprostenol and 0.01 to 1 microM PGF2 significantly induced MKP1 mRNA levels, which peaked at 1 hour of treatment and returned to baseline at 2 hours. CONCLUSIONS: Fluprostenol enhanced, whereas IL-1 inhibited, OCCM mineralization. Using cDNA subtraction hybridization, we identified primary genes that correlate with the observed anabolic and catabolic responses. These findings further our understanding of cementoblast function and suggest that differentially induced genes may mediate cementum formation and resorption.
PMID: 16881805
ISSN: 0022-3492
CID: 1318652

Parathyroid hormone induces receptor activity modifying protein-3 (RAMP3) expression primarily via 3',5'-cyclic adenosine monophosphate signaling in osteoblasts

Phelps, E; Bezouglaia, O; Tetradis, S; Nervina, J M
Parathyroid hormone (PTH) has significant anabolic and catabolic effects on bone. We hypothesize that PTH-induced primary response genes are important determinants of osteoblast function. PTH induces osteoblastic gene expression through PTHR1, a heptahelical receptor that triggers cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA), protein kinase C (PKC), and calcium signaling. By using representational difference analysis we found that receptor activity modifying protein-3 (RAMP3) is a PTH-induced primary response gene in osteoblastic cells. RAMP3 is a coactivator that directs calcitonin receptor (CTR) and CTR-like receptor (CRLR) glycosylation, trafficking, and ligand-binding specificity. Our purpose was to characterize PTH-induced RAMP3 messenger ribonucleic acid (mRNA) levels in primary mouse osteoblasts (MOBs) and to determine which signaling pathway mediates this effect. 10 nM PTH maximally induced RAMP3 mRNA levels in MOBs at 4 hours. Protein synthesis inhibition with 3 microg/mL cycloheximide did not affect PTH-induced RAMP3 mRNA levels. Selective activation of cAMP-PKA signaling with, 10 microM forskolin (FSK) and PKC signaling with 1 microM phorbol 12-myristate 13-acetate (PMA) significantly increased RAMP3 mRNA levels, whereas 1 microM ionomycin (a calcium ionophore) had no effect. Pretreatment with 30 microM H89, a PKA inhibitor, significantly blocked PTH- and FSK-induced RAMP3 mRNA levels. Pretreatment with 1 microM PMA, which depletes PKC, had no effect on PTH- and FSK-induced RAMP3 mRNA levels but blocked PMA-induced RAMP3 mRNA levels. 100 nM PTH (3-34), which activates PKC and calcium but not PKA, had no effect on RAMP3 mRNA levels. These findings indicate that RAMP3 is a PTH-induced primary response gene in primary MOBs and that PTH regulates RAMP3 gene expression primarily through the cAMP-PKA pathway.
PMID: 16075364
ISSN: 0171-967x
CID: 3140322