Try a new search

Format these results:

Searched for:

person:mignap01

Total Results:

98


Protein targets of inflammatory serine proteases and cardiovascular disease

Sharony, Ram; Yu, Pey-Jen; Park, Joy; Galloway, Aubrey C; Mignatti, Paolo; Pintucci, Giuseppe
Serine proteases are a key component of the inflammatory response as they are discharged from activated leukocytes and mast cells or generated through the coagulation cascade. Their enzymatic activity plays a major role in the body's defense mechanisms but it has also an impact on vascular homeostasis and tissue remodeling. Here we focus on the biological role of serine proteases in the context of cardiovascular disease and their mechanism(s) of action in determining specific vascular and tissue phenotypes. Protease-activated receptors (PARs) mediate serine protease effects; however, these proteases also exert a number of biological activities independent of PARs as they target specific protein substrates implicated in vascular remodeling and the development of cardiovascular disease thus controlling their activities. In this review both PAR-dependent and -independent mechanisms of action of serine proteases are discussed for their relevance to vascular homeostasis and structural/functional alterations of the cardiovascular system. The elucidation of these mechanisms will lead to a better understanding of the molecular forces that control vascular and tissue homeostasis and to effective preventative and therapeutic approaches.
PMCID:2936362
PMID: 20804552
ISSN: 1476-9255
CID: 156190

Correlation between plasma osteopontin levels and aortic valve calcification: potential insights into the pathogenesis of aortic valve calcification and stenosis

Yu, Pey-Jen; Skolnick, Adam; Ferrari, Giovanni; Heretis, Katherine; Mignatti, Paolo; Pintucci, Giuseppe; Rosenzweig, Barry; Diaz-Cartelle, Juan; Kronzon, Itzhak; Perk, Gila; Pass, Harvey I; Galloway, Aubrey C; Grossi, Eugene A; Grau, Juan B
OBJECTIVE: The inflammatory process of aortic stenosis involves the differentiation of aortic valve myofibroblasts into osteoblasts. Osteopontin, a proinflammatory glycoprotein, both stimulates differentiation of myofibroblasts and regulates the deposition of calcium by osteoblasts. Osteopontin levels are increased in patients with such conditions as end-stage renal disease, ectopic calcification, and autoimmune disease. We hypothesized that increased plasma osteopontin levels might be associated with the presence of aortic valve calcification and stenosis. METHODS: Venous blood from volunteers older than 65 years undergoing routine echocardiographic analysis or aortic valve surgery for aortic stenosis was collected. Plasma osteopontin levels were measured by means of enzyme-linked immunosorbent assay. The presence of aortic stenosis was defined as an aortic valve area of less than 2.0 cm(2). Aortic valve calcification was assessed by using a validated echocardiographic grading system (1, none; 2, mild; 3, moderate; 4, severe). Comparisons were performed with nonpaired t tests. RESULTS: Aortic stenosis was present in 23 patients (mean age, 78 years) and was absent in 7 patients (mean age, 72 years). Aortic valve calcification scores were 3.5 +/- 0.6 and 1.3 +/- 0.5 in patients with and without aortic stenosis, respectively (P < .001). Patients with no or mild aortic valve calcification had lower osteopontin levels compared with patients with moderate or severe aortic valve calcification (406.1 +/- 165.8 vs 629.5 +/- 227.5 ng/mL, P = .01). Similarly, patients with aortic stenosis had higher osteopontin levels compared with patients without aortic stenosis (652.2 +/- 218.7 vs 379.7 +/- 159.9 ng/mL, P < .01). CONCLUSION: Increased levels of plasma osteopontin are associated with the presence of aortic valve calcification and stenosis. These findings suggest that osteopontin might play a functional role in the pathogenesis of calcific aortic stenosis
PMID: 19577079
ISSN: 1097-685x
CID: 100629

Topical Mitogen-Activated Protein Kinases Inhibition Reduces Intimal Hyperplasia in Arterialized Vein Grafts

Gulkarov, Iosif; Bohmann, Katja; Cinnante, Karma M; Pirelli, Luigi; Yu, Pey-Jen; Grau, Juan B; Pintucci, Giuseppe; Galloway, Aubrey C; Mignatti, Paolo
OBJECTIVE: Vein graft arterialization results in activation of the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinases-1 and -2 (ERK1/2), which have been implicated in cell proliferation, migration, and apoptosis. The goal of our study was to characterize the effect of MAPK inhibition on intimal hyperplasia (IH) in arterialized vein grafts in hypercholesterolemic rabbits. METHODS: Reversed bilateral jugular vein to common carotid artery interposition grafts were constructed in 16 New Zealand White rabbits. The veins were incubated for 30 min prior to grafting with either the synthetic ERK1/2 activation inhibitor UO126 or the control vehicle. Vein graft and control jugular vein were harvested 3 h, 1 d, and 28 d after arterialization for histological and biochemical analyses. RESULTS: Treatment with UO126 was associated with 31% reduction in mean intimal area (1.68 +/- 0.78 mm(2)versus 2.44 +/- 1.65 mm(2); mean +/- SD; P = 0.036) relative to controls. The intima-to-media ratio of UO126-treated vein grafts decreased by 29% (0.53 +/- 0.04 versus 0.74 +/- 0.06; mean +/- SD; P < 0.01) compared to controls, vehicle-treated vein grafts. There was also significant increase in apoptosis in UO126-treated vein graft medial cell layer at 1 d. CONCLUSION: Topical administration of UO126 before vein grafting significantly decreases IH in arterialized vein grafts in hypercholesterolemic rabbits. These results may have significant implications for the development of strategies aimed at blocking or reducing IH in bypass grafts. Therefore, further evaluation of this simple strategy to improve vein graft patency following coronary artery or peripheral vascular bypass surgery is warranted
PMID: 18805551
ISSN: 1095-8673
CID: 96446

Transforming growth factor-beta 1 (TGF-beta1) induces angiogenesis through vascular endothelial growth factor (VEGF)-mediated apoptosis

Ferrari, Giovanni; Cook, Brandoch D; Terushkin, Vitaly; Pintucci, Giuseppe; Mignatti, Paolo
VEGF and TGF-beta1 induce angiogenesis but have opposing effects on endothelial cells. VEGF protects endothelial cells from apoptosis; TGF-beta1 induces apoptosis. We have previously shown that VEGF/VEGF receptor-2 (VEGFR2) signaling mediates TGF-beta1 induction of apoptosis. This finding raised an important question: Does this mechanism stimulate or inhibit angiogenesis? Here we report that VEGF-mediated apoptosis is required for TGF-beta1 induction of angiogenesis. In vitro the apoptotic effect of TGF-beta1 on endothelial cells is rapid and followed by a long period in which the cells are refractory to apoptosis induction by TGF-beta1. Inhibition of VEGF/VEGFR2 signaling abrogates formation of cord-like structures by TGF-beta1 with an effect comparable to that of z-VAD, an apoptosis inhibitor. Similarly, genetic deficiency of VEGF abolishes TGF-beta1 upregulation of endothelial cell differentiation and formation of vascular structures in embryoid bodies. In vivo TGF-beta1 induces endothelial cell apoptosis as rapidly as in vitro. Inhibition of VEGF blocks TGF-beta1 induction of both apoptosis and angiogenesis, an effect similar to that of z-VAD. Thus, TGF-beta1 induction of angiogenesis requires a rapid and transient apoptotic effect mediated by VEGF/VEGFR2. This novel, unexpected role of VEGF and VEGFR2 indicates VEGF-mediated apoptosis as a potential target to control angiogenesis
PMCID:2749291
PMID: 19180561
ISSN: 1097-4652
CID: 97035

Inhibition of smooth muscle cell migration and neointima formation in vein grafts by overexpression of matrix metalloproteinase-3

Kallenbach, Klaus; Salcher, Rolf; Heim, Albert; Karck, Matthias; Mignatti, Paolo; Haverich, Axel
OBJECTIVE: Saphenous vein grafts suffer from neointima formation following bypass surgery. Matrix metalloproteinases (MMPs) play important roles in this process. We examined MMP-3 for its therapeutic potential to prevent smooth muscle cell migration and neointima formation in venous bypass grafts using adenovirus-mediated gene transfer. METHODS: Human aortic smooth muscle cells (HASMC) were transduced with adenoviral vectors encoding ss-galactosidase (AVEssgal) or human MMP-3 (hMMP-3), and characterized for migration in the amniotic membrane stroma as an in vitro model of the vascular wall. Cholesterol-fed New Zealand white rabbits underwent jugular vein bypass grafting into carotid arteries. Before insertion, grafts were incubated ex vivo with either AVEssgal or hMMP-3. Transgene expression was characterized by immunohistochemistry and in situ zymography. Grafts (n = 6) were explanted after 28 days and intimal hyperplasia was quantified. RESULTS: Migration of HASMC was significantly reduced when transduced with hMMP-3 compared to controls (P < .001). Immunocytochemistry of hMMP-3 transduced venous grafts localized this protein to the intima. In situ-zymography showed increased MMP activity in the intima of hMMP-3 transfected grafts. Stenosis degree (P = .001), intima/media-ratio (P = .023) and lesion thickness (P = .003) were significantly reduced in grafts transduced with Ad.MMP-3 in comparison to controls. There was no difference inside control groups. CONCLUSION: MMP-3 overexpression inhibits formation of intimal hyperplasia in arterialized vein grafts. Adenovirus mediated gene transfer of MMP-3 may be of clinical use to prevent vein graft stenosis following bypass surgery
PMCID:3816542
PMID: 19268777
ISSN: 1097-6809
CID: 135230

TGF-beta1 induces rearrangement of FLK-1-VE-cadherin-beta-catenin complex at the adherens junction through VEGF-mediated signaling

Cook, Brandoch D; Ferrari, Giovanni; Pintucci, Giuseppe; Mignatti, Paolo
VEGF and TGF-beta1 induce angiogenesis but have opposing effects on vascular endothelial cells: VEGF promotes survival; TGF-beta1 induces apoptosis. We have previously shown that TGF-beta1 induces endothelial cell apoptosis via up-regulation of VEGF expression and activation of signaling through VEGF receptor-2 (flk-1). In context with TGF-beta1, VEGF signaling is transiently converted from a survival into an apoptotic one. VEGF promotes cell survival in part via activation of PI3K/Akt by a mechanism dependent on the formation of a multi-protein complex that includes flk-1 and the adherens junction proteins VE-cadherin and beta-catenin. Here we report that TGF-beta1 induces rearrangement of the adherens junction complex by separating flk-1 from VE-cadherin and increasing beta-catenin association with both flk-1 and VE-cadherin. This rearrangement is caused neither by changes in adherens junction mRNA or protein expression nor by post-translational modification, and requires VEGF signaling through flk-1. These results show that the adherens junction is an important regulatory component of TGF-beta1-VEGF interaction in endothelial cells
PMCID:2588645
PMID: 18980215
ISSN: 1097-4644
CID: 92170

Thrombin cleaves the high molecular weight forms of basic fibroblast growth factor (FGF-2): a novel mechanism for the control of FGF-2 and thrombin activity

Yu, P-J; Ferrari, G; Pirelli, L; Galloway, A C; Mignatti, P; Pintucci, G
The fgf-2 gene encodes low molecular weight (LMW, 18 kDa) and high molecular weight (HMW, 22-24 kDa) forms that originate from alternative translation of a single mRNA and exhibit diverse biological functions. HMW fibroblast growth factor-2 (FGF-2) inhibits cell migration and induces cell transformation or growth arrest in a cell type- and dose-dependent fashion. Conversely, LMW FGF-2 upregulates both cell proliferation and migration in most cell types. Although transcriptional and translational regulation of HMW and LMW FGF-2 has been extensively investigated, little is known about post-translational control of their relative expression. Here we report that thrombin, a key coagulation factor and inflammatory mediator, cleaves HMW FGF-2 into an LMW FGF-2-like form that stimulates endothelial cell migration and proliferation. The effect of thrombin on these cell functions requires HMW FGF-2 cleavage. This post-translational control mechanism adds a novel level of complexity to the regulation of FGF-2, and links the activities of thrombin and FGF-2 in patho-physiological processes in which both molecules are expressed
PMCID:3727294
PMID: 17968311
ISSN: 1476-5594
CID: 79088

Tissue inhibitor of metalloproteinases-2 binding to membrane-type 1 matrix metalloproteinase induces MAPK activation and cell growth by a non-proteolytic mechanism

D'Alessio, Silvia; Ferrari, Giovanni; Cinnante, Karma; Scheerer, William; Galloway, Aubrey C; Roses, Daniel F; Rozanov, Dmitri V; Remacle, Albert G; Oh, Eok-Soo; Shiryaev, Sergey A; Strongin, Alex Y; Pintucci, Giuseppe; Mignatti, Paolo
Membrane-type 1 matrix metalloproteinase (MT1-MMP), a transmembrane proteinase with a short cytoplasmic domain and an extracellular catalytic domain, controls a variety of physiological and pathological processes through the proteolytic degradation of extracellular or transmembrane proteins. MT1-MMP forms a complex on the cell membrane with its physiological protein inhibitor, tissue inhibitor of metalloproteinases-2 (TIMP-2). Here we show that, in addition to extracellular proteolysis, MT1-MMP and TIMP-2 control cell proliferation and migration through a non-proteolytic mechanism. TIMP-2 binding to MT1-MMP induces activation of ERK1/2 by a mechanism that does not require the proteolytic activity and is mediated by the cytoplasmic tail of MT1-MMP. MT1-MMP-mediated activation of ERK1/2 up-regulates cell migration and proliferation in vitro independently of extracellular matrix proteolysis. Proteolytically inactive MT1-MMP promotes tumor growth in vivo, whereas proteolytically active MT1-MMP devoid of cytoplasmic tail does not have this effect. These findings illustrate a novel role for MT1-MMP-TIMP-2 interaction, which controls cell functions by a mechanism independent of extracellular matrix degradation
PMID: 17991754
ISSN: 0021-9258
CID: 79292

Vascular injury and modulation of MAPKs: A targeted approach to therapy of restenosis

Yu, Pey-Jen; Ferrari, Giovanni; Pirelli, Luigi; Gulkarov, Iosif; Galloway, Aubrey C; Mignatti, Paolo; Pintucci, Giuseppe
Cardiovascular interventions that restore blood circulation to ischemic areas are accompanied by significant tissue damage, which triggers a vascular remodeling response that may result in restenosis of blood conduits. Early endothelial dysfunction and/or impairment is the early event of a cascade that leads, through an inflammatory response and dedifferentiation of medial smooth muscle cells with abundant deposition of extracellular matrix, to intimal hyperplasia. Here we present the molecular and cellular mechanisms of intimal hyperplasia secondary to vascular injury and discuss the potential role of therapeutic modulation of the intracellular signaling pathways that differentially effect vascular endothelial and smooth muscle cells. The role of mitogen-activated protein kinases (MAPKs) and the outcome of their modulation in these processes are highlighted here as they provide a promising therapeutic target for prevention of restenosis
PMID: 17448633
ISSN: 0898-6568
CID: 72033

Basic fibroblast growth factor (FGF-2): the high molecular weight forms come of age

Yu, Pey-Jen; Ferrari, Giovanni; Galloway, Aubrey C; Mignatti, Paolo; Pintucci, Giuseppe
After over thirty years from its discovery, research on basic fibroblast growth factor (FGF-2) keeps revealing new aspects of the complexity of its gene expression as it evolved in the eukaryotic organisms. The discovery of multiple forms of FGF-2 generated by alternative translation from AUG and non-canonical CUG codons on the same mRNA transcript has led to the characterization of a low molecular weight (LMW) FGF-2 form and various high molecular weight (HMW) forms (four in humans). In this review, we discuss the biochemical features and biological activities of the different FGF-2 forms. In particular, we focus on the properties that are unique to the HMW forms and its biological functions
PMID: 17131363
ISSN: 0730-2312
CID: 72034