Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Skirball Institute

Total Results:

4576


Protein target highlights in CASP15: Analysis of models by structure providers

Alexander, Leila T; Durairaj, Janani; Kryshtafovych, Andriy; Abriata, Luciano A; Bayo, Yusupha; Bhabha, Gira; Breyton, Cécile; Caulton, Simon G; Chen, James; Degroux, Séraphine; Ekiert, Damian C; Erlandsen, Benedikte S; Freddolino, Peter L; Gilzer, Dominic; Greening, Chris; Grimes, Jonathan M; Grinter, Rhys; Gurusaran, Manickam; Hartmann, Marcus D; Hitchman, Charlie J; Keown, Jeremy R; Kropp, Ashleigh; Kursula, Petri; Lovering, Andrew L; Lemaitre, Bruno; Lia, Andrea; Liu, Shiheng; Logotheti, Maria; Lu, Shuze; Markússon, Sigurbjörn; Miller, Mitchell D; Minasov, George; Niemann, Hartmut H; Opazo, Felipe; Phillips, George N; Davies, Owen R; Rommelaere, Samuel; Rosas-Lemus, Monica; Roversi, Pietro; Satchell, Karla; Smith, Nathan; Wilson, Mark A; Wu, Kuan-Lin; Xia, Xian; Xiao, Han; Zhang, Wenhua; Zhou, Z Hong; Fidelis, Krzysztof; Topf, Maya; Moult, John; Schwede, Torsten
We present an in-depth analysis of selected CASP15 targets, focusing on their biological and functional significance. The authors of the structures identify and discuss key protein features and evaluate how effectively these aspects were captured in the submitted predictions. While the overall ability to predict three-dimensional protein structures continues to impress, reproducing uncommon features not previously observed in experimental structures is still a challenge. Furthermore, instances with conformational flexibility and large multimeric complexes highlight the need for novel scoring strategies to better emphasize biologically relevant structural regions. Looking ahead, closer integration of computational and experimental techniques will play a key role in determining the next challenges to be unraveled in the field of structural molecular biology.
PMID: 37493353
ISSN: 1097-0134
CID: 5607612

Activation of Nod2 signaling upon norovirus infection enhances antiviral immunity and susceptibility to colitis

Muharram, Ghaffar; Thépaut, Marion; Lobert, Pierre-Emmanuel; Grandjean, Teddy; Boulard, Olivier; Delacre, Myriam; Wakeford, Emmrich; Wheeler, Richard; Poulin, Lionel Franz; Boneca, Ivo Gomperts; Lafont, Frank; Michallet, Marie-Cécile; Hober, Didier; Cadwell, Ken; Chamaillard, Mathias
Over 90% of epidemic non-bacterial gastroenteritis are caused by human noroviruses (NoVs), which persist in a substantial subset of people allowing their spread worldwide. This has led to a significant number of endemic cases and up to 70,000 children deaths in developing countries. NoVs are primarily transmitted through the fecal-oral route. To date, studies have focused on the influence of the gut microbiota on enteric viral clearance by mucosal immunity. In this study, the use of mouse norovirus S99 (MNoV_S99) and CR6 (MNoV_CR6), two persistent strains, allowed us to provide evidence that the norovirus-induced exacerbation of colitis severity relied on bacterial sensing by nucleotide-binding oligomerization domain 2 (Nod2). Consequently, Nod2-deficient mice showed reduced levels of gravity of Dextran sodium sulfate (DSS)-induced colitis with both viral strains. And MNoV_CR6 viremia was heightened in Nod2
PMCID:10478738
PMID: 37655966
ISSN: 1949-0984
CID: 5618092

Reversible Differentiation of Melanocyte Stem Cells: Designed to Last or Be Lost?

Sun, Qi; Brinks, Anna; Ito, Mayumi
PMID: 37676220
ISSN: 1523-1747
CID: 5607832

SorCS2 binds progranulin to regulate motor neuron development

Thomasen, Pernille Bogetofte; Salasova, Alena; Kjaer-Sorensen, Kasper; Woloszczuková, Lucie; Lavický, Josef; Login, Hande; Tranberg-Jensen, Jeppe; Almeida, Sergio; Beel, Sander; Kavková, Michaela; Qvist, Per; Kjolby, Mads; Ovesen, Peter Lund; Nolte, Stella; Vestergaard, Benedicte; Udrea, Andreea-Cornelia; Nejsum, Lene Niemann; Chao, Moses V; Van Damme, Philip; Krivanek, Jan; Dasen, Jeremy; Oxvig, Claus; Nykjaer, Anders
Motor neuron (MN) development and nerve regeneration requires orchestrated action of a vast number of molecules. Here, we identify SorCS2 as a progranulin (PGRN) receptor that is required for MN diversification and axon outgrowth in zebrafish and mice. In zebrafish, SorCS2 knockdown also affects neuromuscular junction morphology and fish motility. In mice, SorCS2 and PGRN are co-expressed by newborn MNs from embryonic day 9.5 until adulthood. Using cell-fate tracing and nerve segmentation, we find that SorCS2 deficiency perturbs cell-fate decisions of brachial MNs accompanied by innervation deficits of posterior nerves. Additionally, adult SorCS2 knockout mice display slower motor nerve regeneration. Interestingly, primitive macrophages express high levels of PGRN, and their interaction with SorCS2-positive motor axon is required during axon pathfinding. We further show that SorCS2 binds PGRN to control its secretion, signaling, and conversion into granulins. We propose that PGRN-SorCS2 signaling controls MN development and regeneration in vertebrates.
PMID: 37897724
ISSN: 2211-1247
CID: 5590282

3D reconstructions of parasite development and the intracellular niche of the microsporidian pathogen Encephalitozoon intestinalis

Antao, Noelle V; Lam, Cherry; Davydov, Ari; Riggi, Margot; Sall, Joseph; Petzold, Christopher; Liang, Feng-Xia; Iwasa, Janet H; Ekiert, Damian C; Bhabha, Gira
Microsporidia are an early-diverging group of fungal pathogens with a wide host range. Several microsporidian species cause opportunistic infections in humans that can be fatal. As obligate intracellular parasites with highly reduced genomes, microsporidia are dependent on host metabolites for successful replication and development. Our knowledge of microsporidian intracellular development remains rudimentary, and our understanding of the intracellular niche occupied by microsporidia has relied on 2D TEM images and light microscopy. Here, we use serial block-face scanning electron microscopy (SBF-SEM) to capture 3D snapshots of the human-infecting species, Encephalitozoon intestinalis, within host cells. We track E. intestinalis development through its life cycle, which allows us to propose a model for how its infection organelle, the polar tube, is assembled de novo in developing spores. 3D reconstructions of parasite-infected cells provide insights into the physical interactions between host cell organelles and parasitophorous vacuoles, which contain the developing parasites. The host cell mitochondrial network is substantially remodeled during E. intestinalis infection, leading to mitochondrial fragmentation. SBF-SEM analysis shows changes in mitochondrial morphology in infected cells, and live-cell imaging provides insights into mitochondrial dynamics during infection. Our data provide insights into parasite development, polar tube assembly, and microsporidia-induced host mitochondria remodeling.
PMID: 37996434
ISSN: 2041-1723
CID: 5608812

How to get rich quick: Using video to enrich psychology and neuroscience research Comment on "Beyond simple laboratory studies: Developing sophisticated models to study rich behavior" by Maselli et al

Adolph, Karen E; Froemke, Robert C
PMID: 38061248
ISSN: 1873-1457
CID: 5591362

Multiple E3 ligases control tankyrase stability and function

Perrard, Jerome; Smith, Susan
Tankyrase 1 and 2 are ADP-ribosyltransferases that catalyze formation of polyADP-Ribose (PAR) onto themselves and their binding partners. Tankyrase protein levels are regulated by the PAR-binding E3 ligase RNF146, which promotes K48-linked polyubiquitylation and proteasomal degradation of tankyrase and its partners. We identified a novel interaction between tankyrase and a distinct class of E3 ligases: the RING-UIM (Ubiquitin-Interacting Motif) family. We show that RNF114 and RNF166 bind and stabilize monoubiquitylated tankyrase and promote K11-linked diubiquitylation. This action competes with RNF146-mediated degradation, leading to stabilization of tankyrase and its binding partner, Angiomotin, a cancer cell signaling protein. Moreover, we identify multiple PAR-binding E3 ligases that promote ubiquitylation of tankyrase and induce stabilization or degradation. Discovery of K11 ubiquitylation that opposes degradation, along with identification of multiple PAR-binding E3 ligases that ubiquitylate tankyrase, provide insights into mechanisms of tankyrase regulation and may offer additional uses for tankyrase inhibitors in cancer therapy.
PMID: 37938264
ISSN: 2041-1723
CID: 5609832

Play behavior: Tickle and play in the periaqueductal gray [Comment]

Ahmed, Ismail A; Froemke, Robert C
A new study has identified the periaqueductal gray as an important brain region for play and tickle behavior in rats.
PMID: 37935126
ISSN: 1879-0445
CID: 5609802

ZIF-1-mediated degradation of zinc finger proteins in the Caenorhabditis elegans germ line

Schwartz, Aaron Z A; Abdu, Yusuff; Nance, Jeremy
Rapid and conditional protein depletion is the gold standard genetic tool for deciphering the molecular basis of developmental processes. Previously, we showed that by conditionally expressing the E3 ligase substrate adaptor ZIF-1 in Caenorhabditis elegans somatic cells, proteins tagged with the first CCCH Zn finger 1 (ZF1) domain from the germline regulator PIE-1 degrade rapidly, resulting in loss-of-function phenotypes. The described role of ZIF-1 is to clear PIE-1 and several other CCCH Zn finger proteins from early somatic cells, helping to enrich them in germline precursor cells. Here, we show that proteins tagged with the PIE-1 ZF1 domain are subsequently cleared from primordial germ cells (PGCs) in embryos and from undifferentiated germ cells in larvae and adults by ZIF-1. We harness germline ZIF-1 activity to degrade a ZF1-tagged fusion protein from PGCs and show that its depletion produces phenotypes equivalent to those of a null mutation. Our findings reveal that ZIF-1 transitions from degrading CCCH Zn finger proteins in somatic cells to clearing them from undifferentiated germ cells, and that ZIF-1 activity can be harnessed as a new genetic tool to study the early germline.
PMID: 37647858
ISSN: 1943-2631
CID: 5609222

Substrate recognition and transport mechanism of the PIN-FORMED auxin exporters

Ung, Kien Lam; Schulz, Lukas; Stokes, David L; Hammes, Ulrich Z; Pedersen, Bjørn Panyella
Auxins are pivotal plant hormones that regulate plant growth and transmembrane polar auxin transport (PAT) direct patterns of development. The PIN-FORMED (PIN) family of membrane transporters mediate auxin export from the plant cell and play crucial roles in PAT. Here we describe the recently solved structures of PIN transporters, PIN1, PIN3, and PIN8, and also their mechanisms of substrate recognition and transport of auxin. We compare structures of PINs in both inward- and outward-facing conformations, as well as PINs with different binding configurations for auxin. By this comparative analysis, a model emerges for an elevator transport mechanism. Central structural elements necessary for function are identified, and we show that these are shared with other distantly related protein families.
PMCID:10592131
PMID: 37574372
ISSN: 0968-0004
CID: 5619142