Searched for: active:yes
exclude-minors:true
person:lind01 or kc16 or Ipe Ninan or sippyt01
Social neuroscience: Nosh or nurture?
O'Neill, Patrick T; Lin, Dayu
Mothers exhibit an increased appetite to cope with the energetic demands of lactation. A new study has identified a neural circuit that interfaces between food seeking and pup caring.
PMID: 41056912
ISSN: 1879-0445
CID: 5951822
Neural plasticity supporting parental behaviors
O'Neill, Patrick T; Lin, Dayu
Becoming a parent involves extraordinary changes that allow caregivers to attend to and nurture infants. Neural circuits must adapt to the demands of caregiving to orchestrate various complex nurturing behaviors. These changes occur between two opposing circuits: a circuit primed for the expression of parenting to execute caregiving, and a circuit that suppresses this behavioral expression when the timing is not appropriate. In this review, we provide an overview of the neural circuits supporting the positive and negative control of parental behaviors and discuss mechanisms by which these opposing circuits are altered to facilitate the onset of parental care.
PMID: 40946422
ISSN: 1873-6882
CID: 5934732
Natural frequencies in sexual pelvic thrusting
Nehme-Haily, Joseph; Yin, Luping; Diaz, Veronica; Lin, Dayu; Hu, David L
Seventy % of mammals copulate using repeated pelvic thrusting, while the transfer of sperm requires just a single intromission. Why did thrusting evolve to be the dominant form of sexual intercourse? In this study, we investigate how the rate of sexual pelvic thrusting changes with body size. By analyzing films of copulating mammals, from mice Mus musculus to elephants Elephantidae, we find that bigger animals thrust slower. The rate of pelvic thrusting decreases from 6 Hz for the pocket mouse Pergonathus to 1.3-1.8 Hz for humans to an absence of thrusting for the rhino Rhinocerotidae and elephant Elephantidae families. To understand this dependence on body size, we consider the spring-like behavior of the legs, which is associated with the elasticity of the body's muscles, tendons, and ligaments. For both running and thrusting, a maximum amplitude and great energy savings can be achieved if the system is oscillated at its resonant or natural frequency. Resonant frequencies, as measured through previous studies of running in dogs Canis familiaris and horses Equus ferus caballus, show good agreement with sexual thrusting frequencies. Running and sexual thrusting have nothing in common from a behavioral perspective, but from a physical perspective, they are both constrained by the same musculoskeletal systems, and both take advantage of resonance. Our findings may provide improved treatments for human sexual dysfunction as well as improving breeding strategies for domestic mammals.
PMID: 40690312
ISSN: 1557-7023
CID: 5901272
Estrogen Control of Social Behaviors
Lawal, Oluwadamilola O; Lin, Dayu; Lischinsky, Julieta E
Social behaviors, including parental care, mating, and fighting, all depend on the hormonal milieu of an organism. Decades of work highlighted estrogen as a key hormonal controller of social behaviors, exerting its influence primarily through binding to estrogen receptor alpha (ERα). Recent technological advances in chemogenetics, optogenetics, gene editing, and transgenic model organisms have allowed for a detailed understanding of the neuronal subpopulations and circuits for estrogen action across Esr1-expressing interconnected brain regions. Focusing on rodent studies, in this review we examine classical and contemporary research demonstrating the multifaceted role of estrogen and ERα in regulating social behaviors in a sex-specific and context-dependent manner. We highlight gaps in knowledge, particularly a missing link in the molecular cascade that allows estrogen to exert such a diverse behavioral repertoire through the coordination of gene expression changes. Understanding the molecular and cellular basis of ERα's action in social behaviors provides insights into the broader mechanisms of hormone-driven behavior modulation across the lifespan.
PMID: 39983027
ISSN: 1545-4126
CID: 5896792
Stress and Parental Behaviors
Wang, Yifan; Lin, Dayu
In nearly all mammalian species, newborn pups are weak and vulnerable, relying heavily on care and protection from parents for survival. Thus, developmentally hardwired neural circuits are in place to ensure the timely expression of parental behaviors. Furthermore, several neurochemical systems, including estrogen, oxytocin, and dopamine, facilitate the emergence and expression of parental behaviors. However, stress can adversely affect these systems, impairing parental behaviors. In this review, we will summarize our current knowledge regarding the impact of stress on pup-directed behavior circuits that lead to infant neglect, abuse, and, in extreme cases, killing. We will discuss various stressors that influence parental behaviors at different life stages and how stress induces changes in the neurochemical systems that support parental care, ultimately leading to its poor performance.
PMID: 39674404
ISSN: 1872-8111
CID: 5762052
Experience-dependent dopamine modulation of male aggression
Dai, Bing; Zheng, Bingqin; Dai, Xiuzhi; Cui, Xiaoyang; Yin, Luping; Cai, Jing; Zhuo, Yizhou; Tritsch, Nicolas X; Zweifel, Larry S; Li, Yulong; Lin, Dayu
Numerous studies support the role of dopamine in modulating aggression1,2, but the exact neural mechanisms remain elusive. Here we show that dopaminergic cells in the ventral tegmental area (VTA) can bidirectionally modulate aggression in male mice in an experience-dependent manner. Although VTA dopaminergic cells strongly influence aggression in novice aggressors, they become ineffective in expert aggressors. Furthermore, eliminating dopamine synthesis in the VTA prevents the emergence of aggression in naive mice but leaves aggression intact in expert aggressors. VTA dopamine modulates aggression through the dorsal lateral septum (dLS), a region known for aggression control. Dopamine enables the flow of information from the hippocampus to the dLS by weakening local inhibition in novice aggressors. In expert aggressors, dLS local inhibition naturally weakens, and the ability of dopamine to modulate dLS cells diminishes. Overall, these results reveal a sophisticated role of dopamine in the rise of aggression in adult male mice.
PMID: 39843745
ISSN: 1476-4687
CID: 5802362
Cell-type-specific auditory responses in the striatum are shaped by feedforward inhibition
Druart, Mélanie; Kori, Megha; Chaimowitz, Corryn; Fan, Catherine; Sippy, Tanya
The posterior "tail" region of the striatum receives dense innervation from sensory brain regions and is important for behaviors that require sensorimotor integration. The output neurons of the striatum, D1 and D2 striatal projection neurons (SPNs), which make up the direct and indirect pathways, are thought to play distinct functional roles, although it remains unclear if these neurons show cell-type-specific differences in their response to sensory stimuli. Here, we examine the strength of synaptic inputs onto D1 and D2 SPNs following the stimulation of upstream auditory pathways. We report that auditory-evoked depolarizations onto D1 SPN responses are stronger and faster. This is due to differences in feedforward inhibition, with fast-spiking interneurons forming stronger synapses onto D2 SPNs. Our results support a model in which differences in feedforward inhibition enable the preferential recruitment of D1 SPNs by auditory stimuli, positioning the direct pathway to initiate sound-driven actions.
PMID: 39721025
ISSN: 2211-1247
CID: 5767522
Leptin-activated hypothalamic BNC2 neurons acutely suppress food intake
Tan, Han L; Yin, Luping; Tan, Yuqi; Ivanov, Jessica; Plucinska, Kaja; Ilanges, Anoj; Herb, Brian R; Wang, Putianqi; Kosse, Christin; Cohen, Paul; Lin, Dayu; Friedman, Jeffrey M
Leptin is an adipose tissue hormone that maintains homeostatic control of adipose tissue mass by regulating the activity of specific neural populations controlling appetite and metabolism1. Leptin regulates food intake by inhibiting orexigenic agouti-related protein (AGRP) neurons and activating anorexigenic pro-opiomelanocortin (POMC) neurons2. However, whereas AGRP neurons regulate food intake on a rapid time scale, acute activation of POMC neurons has only a minimal effect3-5. This has raised the possibility that there is a heretofore unidentified leptin-regulated neural population that rapidly suppresses appetite. Here we report the discovery of a new population of leptin-target neurons expressing basonuclin 2 (Bnc2) in the arcuate nucleus that acutely suppress appetite by directly inhibiting AGRP neurons. Opposite to the effect of AGRP activation, BNC2 neuronal activation elicited a place preference indicative of positive valence in hungry but not fed mice. The activity of BNC2 neurons is modulated by leptin, sensory food cues and nutritional status. Finally, deleting leptin receptors in BNC2 neurons caused marked hyperphagia and obesity, similar to that observed in a leptin receptor knockout in AGRP neurons. These data indicate that BNC2-expressing neurons are a key component of the neural circuit that maintains energy balance, thus filling an important gap in our understanding of the regulation of food intake and leptin action.
PMID: 39478220
ISSN: 1476-4687
CID: 5747152
The multi-stage plasticity in the aggression circuit underlying the winner effect
Yan, Rongzhen; Wei, Dongyu; Varshneya, Avni; Shan, Lynn; Dai, Bing; Asencio, Hector J; Gollamudi, Aishwarya; Lin, Dayu
Winning increases the readiness to attack and the probability of winning, a widespread phenomenon known as the "winner effect." Here, we reveal a transition from target-specific to generalized aggression enhancement over 10 days of winning in male mice. This behavioral change is supported by three causally linked plasticity events in the ventrolateral part of the ventromedial hypothalamus (VMHvl), a critical node for aggression. Over 10 days of winning, VMHvl cells experience monotonic potentiation of long-range excitatory inputs, transient local connectivity strengthening, and a delayed excitability increase. Optogenetically coactivating the posterior amygdala (PA) terminals and VMHvl cells potentiates the PA-VMHvl pathway and triggers the same cascade of plasticity events observed during repeated winning. Optogenetically blocking PA-VMHvl synaptic potentiation eliminates all winning-induced plasticity. These results reveal the complex Hebbian synaptic and excitability plasticity in the aggression circuit during winning, ultimately leading to increased "aggressiveness" in repeated winners.
PMID: 39406242
ISSN: 1097-4172
CID: 5718482
Behavioral tests of the insulin-cholinergic-dopamine link in nucleus accumbens and inhibition by high fat-high sugar diet in male and female rats
Weiner, Sydney P; Carr, Kenneth D
It was previously shown in striatal slices obtained from male rats that insulin excites cholinergic interneurons and increases dopamine (DA) release via α4β2 nicotinic receptors on DA terminals. The effect of insulin on DA release was blocked either by maintaining rats on a high sugar-high fat (HS-HF) diet that induced hyperinsulinemia and nucleus accumbens (NAc) insulin receptor insensitivity, or applying the α4β2 antagonist DHβE. In vivo, NAc shell insulin inactivation decreased a glucose lick microstructure parameter indicative of hedonic impact in male and female rats, and prevented flavor-nutrient learning, tested only in males. The HS-HF diet decreased hedonic impact in males but not females, and prevented flavor-nutrient learning, tested only in males. The present study extends testing to more fully assess the translation of brain slice results to the behaving rat. Insulin inactivation by antibody microinjection in NAc shell was found to decrease the number of lick bursts emitted and average lick burst size, measures of incentive motivation and hedonic impact respectively, for a wide range of glucose concentrations in male and female rats. In contrast, the HS-HF diet decreased these lick parameters in males but not females. Follow-up two-bottle choice tests for 10 % versus 40 % glucose showed decreased intake of both concentrations by males but increased intake of 40 % glucose by females. In a further set of experiments, it was predicted that α4β2 receptor blockade would induce the same behavioral effects as insulin inactivation. In females, DHβE microinjection in NAc shell decreased both lick parameters for glucose as predicted, but in males only the number of lick bursts emitted was decreased. DHβE also decreased the number of lick bursts emitted for saccharin by females but not males. Finally, DHβE microinjection in NAc shell decreased flavor-nutrient learning in both sexes. The few discrepancies seen with regard to the hypothesized insulin-nicotinic-dopaminergic regulation of behavioral responses to nutritive sweetener, and its inhibition by HS-HF diet, are discussed with reference to sex differences in DA dynamics, female resistance to diet-induced metabolic morbidities, and extra-striatal cholinergic inputs to NAc.
PMCID:11323239
PMID: 39067780
ISSN: 1873-507x
CID: 5702462