Try a new search

Format these results:

Searched for:

in-biosketch:true

person:br338

Total Results:

33


Invasive Lobular Carcinoma in the Screening Setting

Reig, Beatriu; Heacock, Laura
Invasive lobular carcinoma (ILC) is the second-most common histologic subtype of breast cancer, constituting 5% to 15% of all breast cancers. It is characterized by an infiltrating growth pattern that may decrease detectability on mammography and US. The use of digital breast tomosynthesis (DBT) improves conspicuity of ILC, and sensitivity is 80% to 88% for ILC. Sensitivity of mammography is lower in dense breasts, and breast tomosynthesis has better sensitivity for ILC in dense breasts compared with digital mammography (DM). Screening US identifies additional ILCs even after DBT, with a supplemental cancer detection rate of 0 to 1.2 ILC per 1000 examinations. Thirteen percent of incremental cancers found by screening US are ILCs. Breast MRI has a sensitivity of 93% for ILC. Abbreviated breast MRI also has high sensitivity but may be limited due to delayed enhancement in ILC. Contrast-enhanced mammography has improved sensitivity for ILC compared with DM, with higher specificity than breast MRI. In summary, supplemental screening modalities increase detection of ILC, with MRI demonstrating the highest sensitivity.
PMID: 39657621
ISSN: 2631-6129
CID: 5762572

Current Practice and Variation in Same-Day Services in Breast Imaging: A Multi-Institutional National Survey of the Society of Breast Imaging Membership

Dontchos, Brian N; Dodelzon, Katerina; Sonnenblick, Emily; Reig, Beatriu; Coffey, Kristen; Kacharia, Vidhi S; Grimm, Lars J
OBJECTIVE:The availability of same-day services in breast imaging is an important topic given potential advantages for timely diagnoses and patient experiences, but there are potential barriers that lead facilities to not offer these services. We sought to understand current practice patterns and radiologist perspectives on offering same-day services. METHODS:The Society of Breast Imaging (SBI) Patient Care & Delivery Committee developed a 19-question survey that was emailed to all 3449 active members of the SBI in May 2023. An exemption from the institutional review board was obtained at the lead author's institution. The survey consisted of 19 questions that were designed to understand the scope, perceptions, barriers, and logistics of same-day services. Comparisons were made between responses for offering same-day services (screening interpretation, diagnostic examinations, biopsies) and respondent demographics. RESULTS:A total of 437 American and Canadian members participated, yielding a response rate of 12.7%. Respondents were most commonly in private practice (43.0%, 188/437), working in an outpatient medical center-based clinic (41.9%, 183/437), and without trainees (64.5%, 282/437). Respondents estimated 12.1% of screening examinations were interpreted while patients waited, which was significantly more common in free-standing breast imaging clinics (P = .028) and practices without trainees (P = .036). Respondents estimated 15.0% of diagnostic examinations were performed same day, which was more common in academic and private practices (P = .03) and practices without trainees (P = .01). Respondents estimated 11.5% of biopsies were performed the same day as the recommendation, which had no association with practice type/context, presence of trainees, number of mammography units, number of radiologists, or number of technologists. Long patient travel distance and limited patient mobility were the most cited reasons for offering patients same-day services. CONCLUSION/CONCLUSIONS:Offering same-day breast imaging services varies among institutions and may be influenced by factors such as practice context and type and the presence of trainees.
PMID: 38340340
ISSN: 2631-6129
CID: 5632212

An efficient deep neural network to classify large 3D images with small objects

Park, Jungkyu; Chledowski, Jakub; Jastrzebski, Stanislaw; Witowski, Jan; Xu, Yanqi; Du, Linda; Gaddam, Sushma; Kim, Eric; Lewin, Alana; Parikh, Ujas; Plaunova, Anastasia; Chen, Sardius; Millet, Alexandra; Park, James; Pysarenko, Kristine; Patel, Shalin; Goldberg, Julia; Wegener, Melanie; Moy, Linda; Heacock, Laura; Reig, Beatriu; Geras, Krzysztof J
3D imaging enables accurate diagnosis by providing spatial information about organ anatomy. However, using 3D images to train AI models is computationally challenging because they consist of 10x or 100x more pixels than their 2D counterparts. To be trained with high-resolution 3D images, convolutional neural networks resort to downsampling them or projecting them to 2D. We propose an effective alternative, a neural network that enables efficient classification of full-resolution 3D medical images. Compared to off-the-shelf convolutional neural networks, our network, 3D Globally-Aware Multiple Instance Classifier (3D-GMIC), uses 77.98%-90.05% less GPU memory and 91.23%-96.02% less computation. While it is trained only with image-level labels, without segmentation labels, it explains its predictions by providing pixel-level saliency maps. On a dataset collected at NYU Langone Health, including 85,526 patients with full-field 2D mammography (FFDM), synthetic 2D mammography, and 3D mammography, 3D-GMIC achieves an AUC of 0.831 (95% CI: 0.769-0.887) in classifying breasts with malignant findings using 3D mammography. This is comparable to the performance of GMIC on FFDM (0.816, 95% CI: 0.737-0.878) and synthetic 2D (0.826, 95% CI: 0.754-0.884), which demonstrates that 3D-GMIC successfully classified large 3D images despite focusing computation on a smaller percentage of its input compared to GMIC. Therefore, 3D-GMIC identifies and utilizes extremely small regions of interest from 3D images consisting of hundreds of millions of pixels, dramatically reducing associated computational challenges. 3D-GMIC generalizes well to BCS-DBT, an external dataset from Duke University Hospital, achieving an AUC of 0.848 (95% CI: 0.798-0.896).
PMID: 37590109
ISSN: 1558-254x
CID: 5588742

A Radiation Therapy Contouring Atlas for Delineation of the Level I and II Axillae in the Prone Position: A Single-Institution Experience

Purswani, Juhi M; Goldberg, Eliana; Cahlon, Oren; Schnabel, Freya; Axelrod, Deborah; Guth, Amber; Perez, Carmen A; Shaikh, Fauzia; Tam, Moses; Formenti, Silvia C; Reig, Beatriu; Gerber, Naamit K
PURPOSE/OBJECTIVE:With transition from supine to prone position, tenting of the pectoralis major occurs, displacing the muscle from the chest wall and shifting the level I and II axillary spaces. For patients for whom we aim to treat the level I and II axillae using the prone technique, accurate delineation of these nodal regions is necessary. Although different consensus guidelines exist for delineation of nodal anatomy in supine position, to our knowledge, there are no contouring guidelines in the prone position that account for this change in nodal anatomy. METHODS AND MATERIALS/METHODS:The level I and II nodal contours from the Radiation Therapy Oncology Group (RTOG) breast cancer supine atlas were adapted for prone position by 2 radiation oncologists and a breast radiologist based on anatomic changes observed from supine to prone positioning on preoperative diagnostic imaging. Forty-three patients from a single institution treated with prone high tangents from 2012 to 2018 were identified as representative cases to delineate the revised level I and II axillae on noncontrast computed tomography (CT) scans obtained during radiation simulation. The revised nodal contours were reviewed by an expanded expert multidisciplinary panel including breast radiologists, radiation oncologists, and surgical oncologists for consistency and reproducibility. RESULTS:Consensus was achieved among the panel in order to create modifications from the RTOG breast atlas for CT-based contouring of the level I and II axillae in prone position using bone, muscle, and skin as landmarks. This atlas provides representative examples and accompanying descriptions for the changes described to the caudal and anterior borders of level II and the anterior, posterior, medial, and lateral borders of level I. A step-by-step guide is provided for properly identifying the revised anterior border of the level I axilla. CONCLUSIONS:The adaptations to the RTOG breast cancer atlas for prone positioning will enable radiation oncologists to more accurately target the level I and II axillae when the axillae are targets in addition to the breast.
PMID: 38729261
ISSN: 1879-8519
CID: 5687062

Problem-solving Breast MRI

Reig, Beatriu; Kim, Eric; Chhor, Chloe M; Moy, Linda; Lewin, Alana A; Heacock, Laura
Breast MRI has high sensitivity and negative predictive value, making it well suited to problem solving when other imaging modalities or physical examinations yield results that are inconclusive for the presence of breast cancer. Indications for problem-solving MRI include equivocal or uncertain imaging findings at mammography and/or US; suspicious nipple discharge or skin changes suspected to represent an abnormality when conventional imaging results are negative for cancer; lesions categorized as Breast Imaging Reporting and Data System 4, which are not amenable to biopsy; and discordant radiologic-pathologic findings after biopsy. MRI should not precede or replace careful diagnostic workup with mammography and US and should not be used when a biopsy can be safely performed. The role of MRI in characterizing calcifications is controversial, and management of calcifications should depend on their mammographic appearance because ductal carcinoma in situ may not appear enhancing on MR images. In addition, ductal carcinoma in situ detected solely with MRI is not associated with a higher likelihood of an upgrade to invasive cancer compared with ductal carcinoma in situ detected with other modalities. MRI for triage of high-risk lesions is a subject of ongoing investigation, with a possible future role for MRI in decreasing excisional biopsies. The accuracy of MRI is likely to increase with the use of advanced techniques such as deep learning, which will likely expand the indications for problem-solving MRI. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material.
PMID: 37733618
ISSN: 1527-1323
CID: 5588732

Women 75 Years Old or Older: To Screen or Not to Screen?

Lee, Cindy S; Lewin, Alana; Reig, Beatriu; Heacock, Laura; Gao, Yiming; Heller, Samantha; Moy, Linda
Breast cancer is the most common cancer in women, with the incidence rising substantially with age. Older women are a vulnerable population at increased risk of developing and dying from breast cancer. However, women aged 75 years and older were excluded from all randomized controlled screening trials, so the best available data regarding screening benefits and risks in this age group are from observational studies and modeling predictions. Benefits of screening in older women are the same as those in younger women: early detection of smaller lower-stage cancers, resulting in less invasive treatment and lower morbidity and mortality. Mammography performs significantly better in older women with higher sensitivity, specificity, cancer detection rate, and positive predictive values, accompanied by lower recall rates and false positives. The overdiagnosis rate is low, with benefits outweighing risks until age 90 years. Although there are conflicting national and international guidelines about whether to continue screening mammography in women beyond age 74 years, clinicians can use shared decision making to help women make decisions about screening and fully engage them in the screening process. For women aged 75 years and older in good health, continuing annual screening mammography will save the most lives. An informed discussion of the benefits and risks of screening mammography in older women needs to include each woman's individual values, overall health status, and comorbidities. This article will review the benefits, risks, and controversies surrounding screening mammography in women 75 years old and older and compare the current recommendations for screening this population from national and international professional organizations. ©RSNA, 2023 Quiz questions for this article are available through the Online Learning Center.
PMID: 37053102
ISSN: 1527-1323
CID: 5464252

Beyond Breast Density: Risk Measures for Breast Cancer in Multiple Imaging Modalities

Acciavatti, Raymond J; Lee, Su Hyun; Reig, Beatriu; Moy, Linda; Conant, Emily F; Kontos, Despina; Moon, Woo Kyung
Breast density is an independent risk factor for breast cancer. In digital mammography and digital breast tomosynthesis, breast density is assessed visually using the four-category scale developed by the American College of Radiology Breast Imaging Reporting and Data System (5th edition as of November 2022). Epidemiologically based risk models, such as the Tyrer-Cuzick model (version 8), demonstrate superior modeling performance when mammographic density is incorporated. Beyond just density, a separate mammographic measure of breast cancer risk is parenchymal textural complexity. With advancements in radiomics and deep learning, mammographic textural patterns can be assessed quantitatively and incorporated into risk models. Other supplemental screening modalities, such as breast US and MRI, offer independent risk measures complementary to those derived from mammography. Breast US allows the two components of fibroglandular tissue (stromal and glandular) to be visualized separately in a manner that is not possible with mammography. A higher glandular component at screening breast US is associated with higher risk. With MRI, a higher background parenchymal enhancement of the fibroglandular tissue has also emerged as an imaging marker for risk assessment. Imaging markers observed at mammography, US, and MRI are powerful tools in refining breast cancer risk prediction, beyond mammographic density alone.
PMID: 36749212
ISSN: 1527-1315
CID: 5420802

ChatGPT and Other Large Language Models Are Double-edged Swords [Editorial]

Shen, Yiqiu; Heacock, Laura; Elias, Jonathan; Hentel, Keith D; Reig, Beatriu; Shih, George; Moy, Linda
PMID: 36700838
ISSN: 1527-1315
CID: 5419662

New Horizons: Artificial Intelligence for Digital Breast Tomosynthesis

Goldberg, Julia E; Reig, Beatriu; Lewin, Alana A; Gao, Yiming; Heacock, Laura; Heller, Samantha L; Moy, Linda
The use of digital breast tomosynthesis (DBT) in breast cancer screening has become widely accepted, facilitating increased cancer detection and lower recall rates compared with those achieved by using full-field digital mammography (DM). However, the use of DBT, as compared with DM, raises new challenges, including a larger number of acquired images and thus longer interpretation times. While most current artificial intelligence (AI) applications are developed for DM, there are multiple potential opportunities for AI to augment the benefits of DBT. During the diagnostic steps of lesion detection, characterization, and classification, AI algorithms may not only assist in the detection of indeterminate or suspicious findings but also aid in predicting the likelihood of malignancy for a particular lesion. During image acquisition and processing, AI algorithms may help reduce radiation dose and improve lesion conspicuity on synthetic two-dimensional DM images. The use of AI algorithms may also improve workflow efficiency and decrease the radiologist's interpretation time. There has been significant growth in research that applies AI to DBT, with several algorithms approved by the U.S. Food and Drug Administration for clinical implementation. Further development of AI models for DBT has the potential to lead to improved practice efficiency and ultimately improved patient health outcomes of breast cancer screening and diagnostic evaluation. See the invited commentary by Bahl in this issue. ©RSNA, 2022.
PMID: 36331878
ISSN: 1527-1323
CID: 5356862

Improving breast cancer diagnostics with deep learning for MRI

Witowski, Jan; Heacock, Laura; Reig, Beatriu; Kang, Stella K; Lewin, Alana; Pysarenko, Kristine; Patel, Shalin; Samreen, Naziya; Rudnicki, Wojciech; Łuczyńska, Elżbieta; Popiela, Tadeusz; Moy, Linda; Geras, Krzysztof J
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has a high sensitivity in detecting breast cancer but often leads to unnecessary biopsies and patient workup. We used a deep learning (DL) system to improve the overall accuracy of breast cancer diagnosis and personalize management of patients undergoing DCE-MRI. On the internal test set (n = 3936 exams), our system achieved an area under the receiver operating characteristic curve (AUROC) of 0.92 (95% CI: 0.92 to 0.93). In a retrospective reader study, there was no statistically significant difference (P = 0.19) between five board-certified breast radiologists and the DL system (mean ΔAUROC, +0.04 in favor of the DL system). Radiologists' performance improved when their predictions were averaged with DL's predictions [mean ΔAUPRC (area under the precision-recall curve), +0.07]. We demonstrated the generalizability of the DL system using multiple datasets from Poland and the United States. An additional reader study on a Polish dataset showed that the DL system was as robust to distribution shift as radiologists. In subgroup analysis, we observed consistent results across different cancer subtypes and patient demographics. Using decision curve analysis, we showed that the DL system can reduce unnecessary biopsies in the range of clinically relevant risk thresholds. This would lead to avoiding biopsies yielding benign results in up to 20% of all patients with BI-RADS category 4 lesions. Last, we performed an error analysis, investigating situations where DL predictions were mostly incorrect. This exploratory work creates a foundation for deployment and prospective analysis of DL-based models for breast MRI.
PMID: 36170446
ISSN: 1946-6242
CID: 5334352