Searched for: in-biosketch:true
person:goldbi05
Microvascular insulin resistance with enhanced muscle glucose disposal in CD36 deficiency
Shibao, Cyndya A; Peche, Vivek S; Pietka, Terri A; Samovski, Dmitri; Williams, Ian M; Abumrad, Naji N; Gamazon, Eric R; Goldberg, Ira J; Wasserman, David H; Abumrad, Nada A
AIMS/HYPOTHESIS/OBJECTIVE:Microvascular dysfunction contributes to insulin resistance. CD36, a fatty acid transporter and modulator of insulin signalling, is abundant in microvascular endothelial cells. Humans carrying the minor allele (G) of CD36 coding variant rs3211938 have 50% reduced CD36 expression and show endothelial dysfunction. We aimed to determine whether G allele carriers have microvascular resistance to insulin and, if so, how this affects glucose disposal. METHODS:and wild-type mice, and in individuals with 50% CD36 deficiency, together with control counterparts, in addition to primary human-derived microvascular endothelial cells with/without CD36 depletion. RESULTS:mice have enhanced insulin-stimulated glucose disposal but reduced vascular compliance and capillary perfusion. Intravital microscopy of the gastrocnemius showed unaltered transcapillary insulin flux. CD36-deficient humans had better insulin-stimulated glucose disposal but insulin-unresponsive microvascular blood volume (MBV). Human microvascular cells depleted of CD36 showed impaired insulin activation of Akt, endothelial NO synthase and NO generation. Thus, in CD36 deficiency, microvascular insulin resistance paradoxically associated with enhanced insulin sensitivity of glucose disposal. CONCLUSIONS/INTERPRETATION/CONCLUSIONS:CD36 deficiency was previously shown to reduce muscle/heart fatty acid uptake, whereas here we showed that it reduced vascular compliance and the ability of insulin to increase MBV for optimising glucose and oxygen delivery. The muscle and heart respond to these energy challenges by transcriptional remodelling priming the tissue for insulin-stimulated glycolytic flux. Reduced oxygen delivery activating hypoxia-induced factors, endothelial release of growth factors or small intracellular vesicles might mediate this adaptation. Targeting NO bioavailability in CD36 deficiency could benefit the microvasculature and muscle/heart metabolism. TRIAL REGISTRATION/BACKGROUND:Clinicaltrials.gov NCT03012386 DATA AVAILABILITY: The RNAseq data generated in this study have been deposited in the NCBI Gene Expression Omnibus ( www.ncbi.nlm.nih.gov/geo/ ) under accession code GSE235988 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE235988 ).
PMID: 39503770
ISSN: 1432-0428
CID: 5766822
Plozasiran for Managing Persistent Chylomicronemia and Pancreatitis Risk
Watts, Gerald F; Rosenson, Robert S; Hegele, Robert A; Goldberg, Ira J; Gallo, Antonio; Mertens, Ann; Baass, Alexis; Zhou, Rong; Muhsin, Ma'an; Hellawell, Jennifer; Leeper, Nicholas J; Gaudet, Daniel; ,
BACKGROUND:Persistent chylomicronemia is a genetic recessive disorder that is classically caused by familial chylomicronemia syndrome (FCS), but it also has multifactorial causes. The disorder is associated with the risk of recurrent acute pancreatitis. Plozasiran is a small interfering RNA that reduces hepatic production of apolipoprotein C-III and circulating triglycerides. METHODS:In a phase 3 trial, we randomly assigned 75 patients with persistent chylomicronemia (with or without a genetic diagnosis) to receive subcutaneous plozasiran (25 mg or 50 mg) or placebo every 3 months for 12 months. The primary end point was the median percent change from baseline in the fasting triglyceride level at 10 months. Key secondary end points were the percent change in the fasting triglyceride level from baseline to the mean of values at 10 months and 12 months, changes in the fasting apolipoprotein C-III level from baseline to 10 months and 12 months, and the incidence of acute pancreatitis. RESULTS:At baseline, the median triglyceride level was 2044 mg per deciliter. At 10 months, the median change from baseline in the fasting triglyceride level (the primary end point) was -80% in the 25-mg plozasiran group, -78% in the 50-mg plozasiran group, and -17% in the placebo group (P<0.001). The key secondary end points showed better results in the plozasiran groups than in the placebo group, including the incidence of acute pancreatitis (odds ratio, 0.17; 95% confidence interval, 0.03 to 0.94; P = 0.03). The risk of adverse events was similar across groups; the most common adverse events were abdominal pain, nasopharyngitis, headache, and nausea. Severe and serious adverse events were less common with plozasiran than with placebo. Hyperglycemia with plozasiran occurred in some patients with prediabetes or diabetes at baseline. CONCLUSIONS:Patients with persistent chylomicronemia who received plozasiran had significantly lower triglyceride levels and a lower incidence of pancreatitis than those who received placebo. (Funded by Arrowhead Pharmaceuticals; PALISADE ClinicalTrials.gov number, NCT05089084.).
PMID: 39225259
ISSN: 1533-4406
CID: 5687742
Variation in lipoprotein(a) response to potent lipid lowering: The role of apolipoprotein (a) isoform size
Akinlonu, Adedoyin; Boffa, Michael B; Lyu, Chen; Zhong, Judy; Jindal, Manila; Fadzan, Maja; Garshick, Michael S; Schwartzbard, Arthur; Weintraub, Howard S; Bredefeld, Cindy; Newman, Jonathan D; Fisher, Edward A; Koschinsky, Marlys L; Goldberg, Ira J; Berger, Jeffrey S
BACKGROUND:Lipoprotein(a) [Lp(a)] is a driver of residual cardiovascular risk. Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) decrease Lp(a) with significant heterogeneity in response. We investigated contributors to the heterogeneous response. METHODS:CHOlesterol Reduction and Residual Risk in Diabetes (CHORD) was a prospective study examining lipid lowering in participants with a low-density lipoprotein cholesterol (LDL-C) >100 mg/dL with and without diabetes (DM) on lipid lowering therapy (LLT) for 30-days with evolocumab 140 mg every 14 days combined with either atorvastatin 80 mg or ezetimibe 10 mg daily. Lp(a) level was measured by immunoturbidometry, and the apolipoprotein (a) [apo(a)] isoform size was measured by denaturing agarose gel electrophoresis and western blotting. We examined the change in Lp(a) levels from baseline to 30 days. RESULTS:Among 150 participants (mean age 50 years, 58% female, 50% non-White, 17% Hispanic, 50% DM), median (interquartile range) Lp(a) was 27.5 (8-75) mg/dL at baseline and 23 (3-68) mg/dL at 30 days, leading to a 10% (0-36) median reduction (P < 0.001). Among 73 (49%) participants with Lp(a) ≥30 mg/dL at baseline, there was a 15% (3-25) median reduction in Lp(a) (P < 0.001). While baseline Lp(a) level was not correlated with change in Lp(a) (r = 0.04, P = 0.59), apo(a) size directly correlated with Lp(a) reduction (P < 0.001). After adjustment for age, sex, race/ethnicity, DM, and type of LLT, apo(a) size remained positively associated with a reduction in Lp(a) (Beta 0.95, 95% confidence interval, 0.93-0.97, P < 0.001). CONCLUSION/CONCLUSIONS:Our data demonstrate variation in Lp(a) reduction with potent LLT. Change in Lp(a) was strongly associated with apo(a) isoform size.
PMID: 39828454
ISSN: 1933-2874
CID: 5777992
Immune checkpoint landscape of human atherosclerosis and influence of cardiometabolic factors
Barcia Durán, José Gabriel; Das, Dayasagar; Gildea, Michael; Amadori, Letizia; Gourvest, Morgane; Kaur, Ravneet; Eberhardt, Natalia; Smyrnis, Panagiotis; Cilhoroz, Burak; Sajja, Swathy; Rahman, Karishma; Fernandez, Dawn M; Faries, Peter; Narula, Navneet; Vanguri, Rami; Goldberg, Ira J; Fisher, Edward A; Berger, Jeffrey S; Moore, Kathryn J; Giannarelli, Chiara
Immune checkpoint inhibitor (ICI) therapies can increase the risk of cardiovascular events in survivors of cancer by worsening atherosclerosis. Here we map the expression of immune checkpoints (ICs) within human carotid and coronary atherosclerotic plaques, revealing a network of immune cell interactions that ICI treatments can unintentionally target in arteries. We identify a population of mature, regulatory CCR7+FSCN1+ dendritic cells, similar to those described in tumors, as a hub of IC-mediated signaling within plaques. Additionally, we show that type 2 diabetes and lipid-lowering therapies alter immune cell interactions through PD-1, CTLA4, LAG3 and other IC targets in clinical development, impacting plaque inflammation. This comprehensive map of the IC interactome in healthy and cardiometabolic disease states provides a framework for understanding the potential adverse and beneficial impacts of approved and investigational ICIs on atherosclerosis, setting the stage for designing ICI strategies that minimize cardiovascular disease risk in cancer survivors.
PMCID:11634783
PMID: 39613875
ISSN: 2731-0590
CID: 5762162
Hyperchylomicronemia causes endothelial cell inflammation and increases atherosclerosis
Izquierdo, Maria Concepcion; Cabodevilla, Ainara G; Basu, Debapriya; Nasias, Dimitris; Kanter, Jenny E; Ho, Winnie; Gjini, Jana; Fisher, Edward A; Kim, Jeffrey; Lee, Warren; Bornfeldt, Karin E; Goldberg, Ira J
The effect of increased triglycerides (TGs) as an independent factor in atherosclerosis development has been contentious, in part, because severe hypertriglyceridemia associates with low levels of low-density lipoprotein cholesterol (LDL-C). To test whether hyperchylomicronemia, in the absence of markedly reduced LDL-C levels, contributes to atherosclerosis, we created mice with induced whole-body lipoprotein lipase (LpL) deficiency combined with LDL receptor (LDLR) deficiency. On an atherogenic Western-type diet (WD), male and female mice with induced global LpL deficiency (iLpl -/-) and LDLR knockdown (Ldlr
PMCID:11623764
PMID: 39649171
ISSN: 2693-5015
CID: 5769492
Temporal Effects of Plozasiran on Lipids and Lipoproteins in Persistent Chylomicronemia [Letter]
Watts, Gerald F; Hegele, Robert A; Rosenson, Robert S; Goldberg, Ira J; Gallo, Antonio; Mertens, Ann; Baass, Alexis; Zhou, Rong; Muhsin, Ma'an; Hellawell, Jennifer; Gaudet, Daniel; Leeper, Nicholas J; ,
PMID: 39549263
ISSN: 1524-4539
CID: 5754022
Temporal Effects of Plozasiran on Lipids and Lipoproteins in Persistent Chylomicronemia [Letter]
Watts, Gerald F; Hegele, Robert A; Rosenson, Robert S; Goldberg, Ira J; Gallo, Antonio; Mertens, Ann; Baass, Alexis; Zhou, Rong; Muhsin, Ma'an; Hellawell, Jennifer; Gaudet, Daniel; Leeper, Nicholas J; ,
PMID: 39549263
ISSN: 1524-4539
CID: 5754032
FITM2 deficiency results in ER lipid accumulation, ER stress, and reduced apolipoprotein B lipidation and VLDL triglyceride secretion in vitro and in mouse liver
Wang, Haizhen; Nikain, Cyrus; Fortounas, Konstantinos I; Amengual, Jaime; Tufanli, Ozlem; La Forest, Maxwell; Yu, Yong; Wang, Meng C; Watts, Russell; Lehner, Richard; Qiu, Yunping; Cai, Min; Kurland, Irwin J; Goldberg, Ira J; Rajan, Sujith; Hussain, M Mahmood; Brodsky, Jeffrey L; Fisher, Edward A
OBJECTIVES/OBJECTIVE:Triglycerides (TGs) associate with apolipoprotein B100 (apoB100) to form very low density lipoproteins (VLDLs) in the liver. The repertoire of factors that facilitate this association is incompletely understood. FITM2, an integral endoplasmic reticulum (ER) protein, was originally discovered as a factor participating in cytosolic lipid droplet (LD) biogenesis in tissues that do not form VLDL. We hypothesized that in the liver, in addition to promoting cytosolic LD formation, FITM2 would also transfer TG from its site of synthesis in the ER membrane to nascent VLDL particles within the ER lumen. METHODS:Experiments were conducted using a rat hepatic cell line (McArdle-RH7777, or McA cells), an established model of mammalian lipoprotein metabolism, and mice. FITM2 expression was reduced using siRNA in cells and by liver specific cre-recombinase mediated deletion of the Fitm2 gene in mice. Effects of FITM2 deficiency on VLDL assembly and secretion in vitro and in vivo were measured by multiple methods, including density gradient ultracentrifugation, chromatography, mass spectrometry, stimulated Raman scattering (SRS) microscopy, sub-cellular fractionation, immunoprecipitation, immunofluorescence, and electron microscopy. MAIN FINDINGS/RESULTS:1) FITM2-deficient hepatic cells in vitro and in vivo secrete TG-depleted VLDL particles, but the number of particles is unchanged compared to controls; 2) FITM2 deficiency in mice on a high fat diet (HFD) results in decreased plasma TG levels. The number of apoB100-containing lipoproteins remains similar, but shift from VLDL to low density lipoprotein (LDL) density; 3) Both in vitro and in vivo, when TG synthesis is stimulated and FITM2 is deficient, TG accumulates in the ER, and despite its availability this pool is unable to fully lipidate apoB100 particles; 4) FITM2 deficiency disrupts ER morphology and results in ER stress. PRINCIPAL CONCLUSIONS/CONCLUSIONS:The results suggest that FITM2 contributes to VLDL lipidation, especially when newly synthesized hepatic TG is in abundance. In addition to its fundamental importance in VLDL assembly, the results also suggest that under dysmetabolic conditions, FITM2 may be an important factor in the partitioning of TG between cytosolic LDs and VLDL particles.
PMID: 39426520
ISSN: 2212-8778
CID: 5719032
Lipid Disorders and Pregnancy
Schatoff, Daria; Jung, Irene Y; Goldberg, Ira J
Practicing endocrinologists are likely to confront 2 major issues that occur with dyslipidemias during pregnancy. The most dramatic is the development of severe hypertriglyceridemia leading to acute pancreatitis. The second is the approach to treatment of familial hypercholesterolemia, a common genetic disorder. This article reviews the normal physiology and the pathophysiology of lipoproteins that occurs with pregnancy and then discusses the approaches to prevention and/or treatment of dyslipidemia in pregnancy with a focus on lifestyle and acceptable drug therapies.
PMID: 39084821
ISSN: 1558-4410
CID: 5731442
Imbalance of APOB Lipoproteins and Large HDL in Type 1 Diabetes Drives Atherosclerosis
Kothari, Vishal; Ho, Tse W W; Cabodevilla, Ainara G; He, Yi; Kramer, Farah; Shimizu-Albergine, Masami; Kanter, Jenny E; Snell-Bergeon, Janet; Fisher, Edward A; Shao, Baohai; Heinecke, Jay W; Wobbrock, Jacob O; Lee, Warren L; Goldberg, Ira J; Vaisar, Tomas; Bornfeldt, Karin E
BACKGROUND/UNASSIGNED:Individuals with type 1 diabetes (T1D) generally have normal or even higher HDL (high-density lipoprotein)-cholesterol levels than people without diabetes yet are at increased risk for atherosclerotic cardiovascular disease (CVD). Human HDL is a complex mixture of particles that can vary in cholesterol content by >2-fold. To investigate if specific HDL subspecies contribute to the increased atherosclerosis associated with T1D, we created mouse models of T1D that exhibit human-like HDL subspecies. We also measured HDL subspecies and their association with incident CVD in a cohort of people with T1D. METHODS/UNASSIGNED: RESULTS/UNASSIGNED: CONCLUSIONS/UNASSIGNED:Our results suggest that the balance between APOB lipoproteins and the larger HDL subspecies contributes to atherosclerosis progression and incident CVD in the setting of T1D and that larger HDLs exert atheroprotective effects on endothelial cells rather than by promoting macrophage cholesterol efflux.
PMID: 38828596
ISSN: 1524-4571
CID: 5664892