Searched for: in-biosketch:true
person:mab928
T2-FLAIR mismatch sign predicts DNA methylation subclass and CDKN2A/B status in IDH-mutant astrocytomas
Lee, Matthew D; Jain, Rajan; Galbraith, Kristyn; Chen, Anna; Lieberman, Evan; Patel, Sohil H; Placantonakis, Dimitris G; Zagzag, David; Barbaro, Marissa; Guillermo Prieto Eibl, Maria Del Pilar; Golfinos, John G; Orringer, Daniel A; Snuderl, Matija
PURPOSE/OBJECTIVE:DNA methylation profiling stratifies isocitrate dehydrogenase (IDH)-mutant astrocytomas into methylation low-grade and high-grade groups. We investigated the utility of the T2-FLAIR mismatch sign for predicting DNA methylation grade and cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion, a molecular biomarker for grade 4 IDH-mutant astrocytomas, according to the 2021 World Health Organization (WHO) classification. EXPERIMENTAL DESIGN/METHODS:Preoperative MRI scans of IDH-mutant astrocytomas subclassified by DNA methylation profiling (n=71) were independently evaluated by two radiologists for the T2-FLAIR mismatch sign. The diagnostic utility of T2-FLAIR mismatch in predicting methylation grade, CDKN2A/B status, copy number variation, and survival was analyzed. RESULTS:The T2-FLAIR mismatch sign was present in 21 of 45 (46.7%) methylation low-grade and 1 of 26 (3.9%) methylation high-grade cases (p<0.001), resulting in 96.2% specificity, 95.5% positive predictive value, and 51.0% negative predictive value for predicting low methylation grade. The T2-FLAIR mismatch sign was also significantly associated with intact CDKN2A/B status (p=0.028) with 87.5% specificity, 86.4% positive predictive value, and 42.9% negative predictive value. Overall multivariable Cox analysis showed that retained CDKN2A/B status remained significant for PFS (p=0.01). Multivariable Cox analysis of the histologic grade 3 subset, which was nearly evenly divided by CDKN2A/B status, CNV, and methylation grade, showed trends toward significance for DNA methylation grade with OS (p=0.045) and CDKN2A/B status with PFS (p=0.052). CONCLUSIONS:The T2-FLAIR mismatch sign is highly specific for low methylation grade and intact CDKN2A/B in IDH-mutant astrocytomas.
PMID: 38829583
ISSN: 1557-3265
CID: 5664982
Prognostic value of DNA methylation subclassification, aneuploidy, and CDKN2A/B homozygous deletion in predicting clinical outcome of IDH mutant astrocytomas
Galbraith, Kristyn; Garcia, Mekka; Wei, Siyu; Chen, Anna; Schroff, Chanel; Serrano, Jonathan; Pacione, Donato; Placantonakis, Dimitris G; William, Christopher M; Faustin, Arline; Zagzag, David; Barbaro, Marissa; Eibl, Maria Del Pilar Guillermo Prieto; Shirahata, Mitsuaki; Reuss, David; Tran, Quynh T; Alom, Zahangir; von Deimling, Andreas; Orr, Brent A; Sulman, Erik P; Golfinos, John G; Orringer, Daniel A; Jain, Rajan; Lieberman, Evan; Feng, Yang; Snuderl, Matija
BACKGROUND:Isocitrate dehydrogenase (IDH) mutant astrocytoma grading, until recently, has been entirely based on morphology. The 5th edition of the Central Nervous System World Health Organization (WHO) introduces CDKN2A/B homozygous deletion as a biomarker of grade 4. We sought to investigate the prognostic impact of DNA methylation-derived molecular biomarkers for IDH mutant astrocytoma. METHODS:We analyzed 98 IDH mutant astrocytomas diagnosed at NYU Langone Health between 2014 and 2022. We reviewed DNA methylation subclass, CDKN2A/B homozygous deletion, and ploidy and correlated molecular biomarkers with histological grade, progression free (PFS), and overall (OS) survival. Findings were confirmed using 2 independent validation cohorts. RESULTS:There was no significant difference in OS or PFS when stratified by histologic WHO grade alone, copy number complexity, or extent of resection. OS was significantly different when patients were stratified either by CDKN2A/B homozygous deletion or by DNA methylation subclass (P value = .0286 and .0016, respectively). None of the molecular biomarkers were associated with significantly better PFS, although DNA methylation classification showed a trend (P value = .0534). CONCLUSIONS:The current WHO recognized grading criteria for IDH mutant astrocytomas show limited prognostic value. Stratification based on DNA methylation shows superior prognostic value for OS.
PMCID:11145445
PMID: 38243818
ISSN: 1523-5866
CID: 5664582
Evaluation of the SSTR2-targeted radiopharmaceutical 177Lu-DOTATATE and SSTR2-specific 68Ga-DOTATATE PET as imaging biomarker in patients with intracranial meningioma
Kurz, Sylvia C; Zan, Elcin; Cordova, Christine; Troxel, Andrea B; Barbaro, Marissa; Silverman, Joshua S; Snuderl, Matija; Zagzag, David; Kondziolka, Douglas; Golfinos, John G; Chi, Andrew S; Sulman, Erik P
BACKGROUND:There are no effective medical therapies for patients with meningioma who progress beyond surgical and radiotherapeutic interventions. Somatostatin receptor Type 2 (SSTR2) represents a promising treatment target in meningiomas. In this multicenter, single-arm phase II clinical study (NCT03971461), the SSTR2-targeting radiopharmaceutical 177Lu-DOTATATE is evaluated for its feasibility, safety, and therapeutic efficacy in these patients. PATIENTS AND METHODS/METHODS:Adult patients with progressive intracranial meningiomas received 177Lu-DOTATATE at a dose of 7.4 GBq (200 mCi) every eight weeks for four cycles. 68Ga-DOTATATE PET-MRI was performed before and six months after begin of treatment. The primary endpoint was progression-free survival (PFS) at 6 months (PFS-6). Secondary endpoints were safety and tolerability, overall survival (OS) at 12 months (OS-12), median PFS, and median OS. RESULTS:Fourteen patients (F=11, M=3) with progressive meningiomas (WHO 1=3, 2=10, 3=1) were enrolled. Median age was 63.1 (range 49.7-78) years. All patients previously underwent tumor resection and at least one course of radiation. Treatment with 177Lu-DOTATATE was well tolerated. Seven patients (50%) achieved PFS-6. Best radiographic response by modified Macdonald criteria was stable disease (SD) in all seven patients. A >25% reduction in 68Ga-DOTATATE (PET) was observed in five meningiomas and two patients. In one lesion, this corresponded to >50% reduction in bidirectional tumor measurements (MRI). CONCLUSIONS:Treatment with 177Lu-DOTATATE was well tolerated. The predefined PFS-6 threshold was met in this interim analysis, thereby allowing this multicenter clinical trial to continue enrollment. 68Ga-DOTATATE PET may be a useful imaging biomarker to assess therapeutic outcome in patients with meningioma.
PMID: 38048045
ISSN: 1557-3265
CID: 5595302
Impact of Rare and Multiple Concurrent Gene Fusions on Diagnostic DNA Methylation Classifier in Brain Tumors
Galbraith, Kristyn; Serrano, Jonathan; Shen, Guomiao; Tran, Ivy; Slocum, Cheyanne C; Ketchum, Courtney; Abdullaev, Zied; Turakulov, Rust; Bale, Tejus; Ladanyi, Marc; Sukhadia, Purvil; Zaidinski, Michael; Mullaney, Kerry; DiNapoli, Sara; Liechty, Benjamin L; Barbaro, Marissa; Allen, Jeffrey C; Gardner, Sharon L; Wisoff, Jeffrey; Harter, David; Hidalgo, Eveline Teresa; Golfinos, John G; Orringer, Daniel A; Aldape, Kenneth; Benhamida, Jamal; Wrzeszczynski, Kazimierz O; Jour, George; Snuderl, Matija
UNLABELLED:DNA methylation is an essential molecular assay for central nervous system (CNS) tumor diagnostics. While some fusions define specific brain tumors, others occur across many different diagnoses. We performed a retrospective analysis of 219 primary CNS tumors with whole genome DNA methylation and RNA next-generation sequencing. DNA methylation profiling results were compared with RNAseq detected gene fusions. We detected 105 rare fusions involving 31 driver genes, including 23 fusions previously not implicated in brain tumors. In addition, we identified 6 multi-fusion tumors. Rare fusions and multi-fusion events can impact the diagnostic accuracy of DNA methylation by decreasing confidence in the result, such as BRAF, RAF, or FGFR1 fusions, or result in a complete mismatch, such as NTRK, EWSR1, FGFR, and ALK fusions. IMPLICATIONS/UNASSIGNED:DNA methylation signatures need to be interpreted in the context of pathology and discordant results warrant testing for novel and rare gene fusions.
PMID: 37870438
ISSN: 1557-3125
CID: 5625782
Clinical utility of whole-genome DNA methylation profiling as a primary molecular diagnostic assay for central nervous system tumors-A prospective study and guidelines for clinical testing
Galbraith, Kristyn; Vasudevaraja, Varshini; Serrano, Jonathan; Shen, Guomiao; Tran, Ivy; Abdallat, Nancy; Wen, Mandisa; Patel, Seema; Movahed-Ezazi, Misha; Faustin, Arline; Spino-Keeton, Marissa; Roberts, Leah Geiser; Maloku, Ekrem; Drexler, Steven A; Liechty, Benjamin L; Pisapia, David; Krasnozhen-Ratush, Olga; Rosenblum, Marc; Shroff, Seema; Boué, Daniel R; Davidson, Christian; Mao, Qinwen; Suchi, Mariko; North, Paula; Hopp, Amanda; Segura, Annette; Jarzembowski, Jason A; Parsons, Lauren; Johnson, Mahlon D; Mobley, Bret; Samore, Wesley; McGuone, Declan; Gopal, Pallavi P; Canoll, Peter D; Horbinski, Craig; Fullmer, Joseph M; Farooqui, Midhat S; Gokden, Murat; Wadhwani, Nitin R; Richardson, Timothy E; Umphlett, Melissa; Tsankova, Nadejda M; DeWitt, John C; Sen, Chandra; Placantonakis, Dimitris G; Pacione, Donato; Wisoff, Jeffrey H; Teresa Hidalgo, Eveline; Harter, David; William, Christopher M; Cordova, Christine; Kurz, Sylvia C; Barbaro, Marissa; Orringer, Daniel A; Karajannis, Matthias A; Sulman, Erik P; Gardner, Sharon L; Zagzag, David; Tsirigos, Aristotelis; Allen, Jeffrey C; Golfinos, John G; Snuderl, Matija
BACKGROUND/UNASSIGNED:Central nervous system (CNS) cancer is the 10th leading cause of cancer-associated deaths for adults, but the leading cause in pediatric patients and young adults. The variety and complexity of histologic subtypes can lead to diagnostic errors. DNA methylation is an epigenetic modification that provides a tumor type-specific signature that can be used for diagnosis. METHODS/UNASSIGNED:We performed a prospective study using DNA methylation analysis as a primary diagnostic method for 1921 brain tumors. All tumors received a pathology diagnosis and profiling by whole genome DNA methylation, followed by next-generation DNA and RNA sequencing. Results were stratified by concordance between DNA methylation and histopathology, establishing diagnostic utility. RESULTS/UNASSIGNED:Of the 1602 cases with a World Health Organization histologic diagnosis, DNA methylation identified a diagnostic mismatch in 225 cases (14%), 78 cases (5%) did not classify with any class, and in an additional 110 (7%) cases DNA methylation confirmed the diagnosis and provided prognostic information. Of 319 cases carrying 195 different descriptive histologic diagnoses, DNA methylation provided a definitive diagnosis in 273 (86%) cases, separated them into 55 methylation classes, and changed the grading in 58 (18%) cases. CONCLUSIONS/UNASSIGNED:DNA methylation analysis is a robust method to diagnose primary CNS tumors, improving diagnostic accuracy, decreasing diagnostic errors and inconclusive diagnoses, and providing prognostic subclassification. This study provides a framework for inclusion of DNA methylation profiling as a primary molecular diagnostic test into professional guidelines for CNS tumors. The benefits include increased diagnostic accuracy, improved patient management, and refinements in clinical trial design.
PMCID:10355794
PMID: 37476329
ISSN: 2632-2498
CID: 5536102
Corrigendum: Time interval from diagnosis to treatment of brain metastases with stereotactic radiosurgery is not associated with radionecrosis or local failure
Leu, Justin; Akerman, Meredith; Mendez, Christopher; Lischalk, Jonathan W; Carpenter, Todd; Ebling, David; Haas, Jonathan A; Witten, Matthew; Barbaro, Marissa; Duic, Paul; Tessler, Lee; Repka, Michael C
[This corrects the article DOI: 10.3389/fonc.2023.1132777.].
PMID: 37093946
ISSN: 2234-943x
CID: 5465052
Time interval from diagnosis to treatment of brain metastases with stereotactic radiosurgery is not associated with radionecrosis or local failure
Leu, Justin; Akerman, Meredith; Mendez, Christopher; Lischalk, Jonathan W; Carpenter, Todd; Ebling, David; Haas, Jonathan A; Witten, Matthew; Barbaro, Marissa; Duic, Paul; Tessler, Lee; Repka, Michael C
INTRODUCTION/UNASSIGNED:Brain metastases are the most common intracranial tumor diagnosed in adults. In patients treated with stereotactic radiosurgery, the incidence of post-treatment radionecrosis appears to be rising, which has been attributed to improved patient survival as well as novel systemic treatments. The impacts of concomitant immunotherapy and the interval between diagnosis and treatment on patient outcomes are unclear. METHODS/UNASSIGNED:This single institution, retrospective study consisted of patients who received single or multi-fraction stereotactic radiosurgery for intact brain metastases. Exclusion criteria included neurosurgical resection prior to treatment and treatment of non-malignant histologies or primary central nervous system malignancies. A univariate screen was implemented to determine which factors were associated with radionecrosis. The chi-square test or Fisher's exact test was used to compare the two groups for categorical variables, and the two-sample t-test or Mann-Whitney test was used for continuous data. Those factors that appeared to be associated with radionecrosis on univariate analyses were included in a multivariable model. Univariable and multivariable Cox proportional hazards models were used to assess potential predictors of time to local failure and time to regional failure. RESULTS/UNASSIGNED:A total of 107 evaluable patients with a total of 256 individual brain metastases were identified. The majority of metastases were non-small cell lung cancer (58.98%), followed by breast cancer (16.02%). Multivariable analyses demonstrated increased risk of radionecrosis with increasing MRI maximum axial dimension (OR 1.10, p=0.0123) and a history of previous whole brain radiation therapy (OR 3.48, p=0.0243). Receipt of stereotactic radiosurgery with concurrent immunotherapy was associated with a decreased risk of local failure (HR 0.31, p=0.0159). Time interval between diagnostic MRI and first treatment, time interval between CT simulation and first treatment, and concurrent immunotherapy had no impact on incidence of radionecrosis or regional failure. DISCUSSION/UNASSIGNED:An optimal time interval between diagnosis and treatment for intact brain metastases that minimizes radionecrosis and maximizes local and regional control could not be identified. Concurrent immunotherapy does not appear to increase the risk of radionecrosis and may improve local control. These data further support the safety and synergistic efficacy of stereotactic radiosurgery with concurrent immunotherapy.
PMID: 37091181
ISSN: 2234-943x
CID: 5464962
RADIONUCLIDE THERAPY WITH 177LU-DOTATATE (LUTATHERA) IN ADULTS WITH ADVANCED INTRACRANIAL MENINGIO [Meeting Abstract]
Kurz, S; Zan, E; Cordova, C; Barbaro, M; Troxel, A; Silverman, J; Snuderl, M; Zagzag, D; Golfinos, J; Kondziolka, D; Sulman, E
BACKGROUND: While most meningiomas are considered benign tumors, a subset of these tumors are characterized by a more aggressive clinical course and require multimodal treatment. Beyond surgical and radiotherapeutic options, there are no effective medical treatments available. Somatostatin receptor 2 (SSTR2) is expressed by the majority of meningiomas. 177Lu-DOTATATE is a SSTR2-targeting radionuclide that has been successful in neuroendocrine tumors. Here we report the results of the interim analysis of an ongoing clinical trial (NCT03971461) that is evaluating the effect of 177Lu-DOTATATE in treating progressive intracranial meningiomas.
METHOD(S): In this Simon two-stage design phase II study, adults with advanced intracranial meningiomas received 177Lu-DOTATATE 7.4 GBq (200 mCi) every eight weeks for four doses. 68Ga-DOTATATE PET-MRI was performed before and at the end of treatment. The primary endpoint was progression-free survival at 6 months (PFS-6). Correlative studies evaluated the association of PFS-6, objective response rate, progression-free survival, overall survival with radiographic tumor measurements, 68Ga-DOTATATE uptake on PET-MRI, SSTR2 expression in tumor, and meningioma methylation subclass.
RESULT(S): Fourteen patients (F = 11, M = 3) with progressive meningiomas (WHO I = 3, II = 10, III = 1) have been enrolled. Median age was 63.1 (range 49-78) years. All patients previously underwent tumor resection and at least one course of radiation. Treatment with 177Lu-DOTATATE was well tolerated, no treatment-limiting toxicities were observed. Six of 14 patients (42%) achieved PFS-6. Radiographically, all six patients had achieved Stable Disease. A functional alteration of tumoral SSTR2 expression by 68Ga-DOTATATE PET-MR imaging was observed in three patients.
CONCLUSION(S): Treatment with SSTR2- targeting 177Lu-DOTATATE is well tolerated. In this interim analysis, six of 14 patients achieved PFS-6. This exceeds the predefined threshold to continue to stage two of this study. This clinical trial is now open to patient enrollment at two study sites in the US
EMBASE:639939893
ISSN: 1523-5866
CID: 5513302
Newly Diagnosed Glioblastoma in Elderly Patients
Yuen, Carlen A; Barbaro, Marissa; Haggiagi, Aya
PURPOSE OF REVIEW/OBJECTIVE:Elderly patients with newly diagnosed glioblastoma (eGBM) carry a worse prognosis compared with their younger counterparts. eGBM garners special attention due to the unique challenges, including increased treatment-associated toxicity, less relative benefit from aggressive therapy, medical comorbidities, and immunosuppression. The pivotal GBM trials excluded patients > 70 years old and the optimal treatment approach remains unsettled for eGBM. In this review, we analyze the historical evidence-based data for treating eGBM and discuss the future direction for managing this vulnerable population. RECENT FINDINGS/RESULTS:Treatment for eGBM continues to evolve. Therapy choice is guided by performance status and presence of O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation. For eGBM with good performance status, combinatorial hypofractionated radiation therapy (hRT) and temozolomide should be recommended. For those with poor performance status, further stratification based on MGMT promoter methylation test result is recommended. Single-agent temozolomide is a viable treatment option for MGMT methylated tumors (mMGMT); in particular, those classified with receptor tyrosine kinase II methylation. hRT alone can be considered in MGMT unmethylated (uMGMT) eGBM patients. As precision oncology continues to advance, effective targeted and immunotherapy may emerge as new treatment options for eGBM. Management of elderly patients with newly diagnosed GBM carries a unique set of challenges. Progress has been made in defining the optimal therapeutic approach for these patients, but many questions remain to be answered.
PMCID:8817659
PMID: 35122621
ISSN: 1534-6269
CID: 5154052
Correction: Newly Diagnosed Glioblastoma in Elderly Patients
Yuen, Carlen A; Barbaro, Marissa; Haggiagi, Aya
PMID: 35199296
ISSN: 1534-6269
CID: 5172252