Try a new search

Format these results:

Searched for:

in-biosketch:true

person:mullim04

Total Results:

187


The two-dose MVA-BN mpox vaccine induces a nondurable and low avidity MPXV-specific antibody response

Oom, Aaron L; Wilson, Kesi K; Yonatan, Miilani; Rettig, Stephanie; Youn, Heekoung Allison; Tuen, Michael; Shah, Yusra; DuMont, Ashley L; Belli, Hayley M; Zucker, Jane R; Rosen, Jennifer B; Herati, Ramin Sedaghat; Samanovic, Marie I; Duerr, Ralf; Kottkamp, Angelica C; Mulligan, Mark J; ,
UNLABELLED:The 2022 global outbreak of clade IIb mpox was the first major outbreak of mpox outside of African nations. To control the outbreak, public health officials began vaccination campaigns using the third-generation orthopoxvirus vaccine modified vaccinia Ankara from Bavarian Nordic (MVA-BN). Prior to this outbreak, the durability of monkeypox virus (MPXV)-specific immunity induced by MVA-BN was poorly understood. In 2022, we launched the New York City Observational Study of Mpox Immunity (NYC OSMI, NCT05654883), a longitudinal study of 171 participants comprising MVA-BN vaccines and mpox convalescent individuals. Peripheral blood sampling was performed at intervals including prior to vaccination, after one dose, and after the second dose. MVA-BN vaccinees with and without a history of smallpox vaccination demonstrated detectable MPXV-specific memory B cells at 1-year post-vaccination. Additionally, MVA-BN increased MPXV neutralizing titers in smallpox vaccine-naïve vaccinees, with a comparable maximum titer reached in naïve and smallpox vaccine-experienced vaccinees. However, neutralizing titers returned to baseline within 5-7 months for naïve individuals, while remaining elevated in those with prior smallpox vaccination. Both naïve and experienced individuals generated robust IgG responses against MPXV H3 and A35, but naïve vaccinees' IgG responses showed lower avidity than experienced vaccinees. These data highlight a low avidity antibody response elicited by MVA-BN that is short-lived in naïve vaccinees. This work supports the need for long-term studies on protection induced by MVA-BN, including the potential need for booster doses as well as the development of next-generation orthopoxvirus vaccines. IMPORTANCE/OBJECTIVE:The ongoing outbreaks of mpox demonstrate the continuing threat of orthopoxviruses to global health. While previous orthopoxvirus vaccines generated lifelong antibody and cellular immunity, we show here that the current mpox vaccine, MVA-BN or JYNNEOS, fails to induce durable antibody immunity in individuals with no prior smallpox vaccination. This raises the important question of whether MVA-BN vaccinees have long-term protection from mpox. Our work highlights the need for further studies into the durability of protection generated by MVA-BN as well as whether subsequent booster doses are necessary to maintain protection.
PMID: 40162783
ISSN: 1098-5514
CID: 5818712

System vaccinology analysis of predictors and mechanisms of antibody response durability to multiple vaccines in humans

Cortese, Mario; Hagan, Thomas; Rouphael, Nadine; Wu, Sheng-Yang; Xie, Xia; Kazmin, Dmitri; Wimmers, Florian; Gupta, Shakti; van der Most, Robbert; Coccia, Margherita; Aranuchalam, Prabhu S; Nakaya, Helder I; Wang, Yating; Coyle, Elizabeth; Horiuchi, Shu; Wu, Hanchih; Bower, Mary; Mehta, Aneesh; Gunthel, Clifford; Bosinger, Steve E; Kotliarov, Yuri; Cheung, Foo; Schwartzberg, Pamela L; Germain, Ronald N; Tsang, John; Li, Shuzhao; Albrecht, Randy; Ueno, Hideki; Subramaniam, Shankar; Mulligan, Mark J; Khurana, Surender; Golding, Hana; Pulendran, Bali
We performed a systems vaccinology analysis to investigate immune responses in humans to an H5N1 influenza vaccine, with and without the AS03 adjuvant, to identify factors influencing antibody response magnitude and durability. Our findings revealed a platelet and adhesion-related blood transcriptional signature on day 7 that predicted the longevity of the antibody response, suggesting a potential role for platelets in modulating antibody response durability. As platelets originate from megakaryocytes, we explored the effect of thrombopoietin (TPO)-mediated megakaryocyte activation on antibody response longevity. We found that TPO administration enhanced the durability of vaccine-induced antibody responses. TPO-activated megakaryocytes also promoted survival of human bone-marrow plasma cells through integrin β1/β2-mediated cell-cell interactions, along with survival factors APRIL and the MIF-CD74 axis. Using machine learning, we developed a classifier based on this platelet-associated signature, which predicted antibody response longevity across six vaccines from seven independent trials, highlighting a conserved mechanism for vaccine durability.
PMID: 39747435
ISSN: 1529-2916
CID: 5779282

Enhanced D614G and Omicron Variants Antibody Persistence in Infants at 2 Months of Age Following Maternal mRNA Booster Vaccination During Pregnancy or Postpartum

Munoz, Flor M; Beigi, Richard; Posavad, Christine M; Kelly, Clifton; Badell, Martina L; Bunge, Katherine; Mulligan, Mark J; Parameswaran, Lalitha; Richardson, Barbra A; Olsen-Chen, Courtney; Novak, Richard M; Brady, Rebecca C; DeFranco, Emily; Gerber, Jeffrey S; Shriver, Mallory; Suthar, Mehul S; Coler, Rhea; Berube, Bryan J; Kim, So Hee; Piper, Jeanna M; Miedema, Joy; Pasetti, Marcela; Neuzil, Kathleen M; Cardemil, Cristina V; ,
BACKGROUND:Following maternal COVID-19 vaccination, the persistence of antibodies in sera and breast milk for mothers and infants is not well characterized. We sought to describe the persistence of antibodies through 2 months after delivery in maternal and infant serum and breast milk following maternal COVID-19 mRNA vaccination and to examine differences by receipt of booster dose during pregnancy or postpartum. METHODS:This is a prospective cohort study with enrollment from July 2021 to January 2022 at 9 US academic sites. Pregnant or postpartum participants and their infants were enrolled after COVID-19 mRNA monovalent vaccination during pregnancy (primary 2-dose series) with booster (third dose) vaccination during pregnancy or within 2 months post-partum. SARS-CoV-2-binding and functional antibody responses at delivery and 2 months after delivery in mothers and infants were measured by spike and receptor-binding domain immunoglobulin (Ig) G, pseudovirus and live neutralizing antibody (nAb) titers to ancestral and Omicron BA.1 and BA.5 strains. Breast milk spike and receptor-binding domain IgG and IgA titers were also measured. RESULTS:A total of 237 maternal/infant dyads were included (110 primary series during pregnancy, 99 pregnancy booster and 28 postpartum booster). A pregnancy booster resulted in 2.2-4.7-fold higher IgG and nAb at delivery and 2 months for both mothers and infants compared to the primary series alone (P < 0.001 for all comparisons). While infant IgG and nAb titers decreased by 2 months of age, the proportion of infants with detectable nAb at 2 months was greater in infants of mothers boosted during pregnancy compared with primary series for all variants (D614G: 99% vs. 56%; BA.1: 56% vs. 4% and BA.5: 57% vs. 9%; P < 0.001 for all comparisons). Breast milk spike IgA and IgG were present in 64%-100% and 100% of participants, respectively, and those boosted during pregnancy or postpartum had 3.1-4.6-fold higher levels of breast milk antibodies at 2 months compared to primary series during pregnancy (P < 0.001). CONCLUSIONS:mRNA COVID-19 monovalent booster vaccination during pregnancy results in significantly higher maternal and infant serum-binding IgG and nAb titers compared to a primary 2-dose series, including against Omicron variants, through 2 months of age. Breast milk antibodies following maternal vaccination during pregnancy or postpartum may provide additional protection during early infancy.
PMCID:11711698
PMID: 39774938
ISSN: 1532-0987
CID: 5779332

Safety and immunogenicity of a ChAd155-vectored rabies vaccine compared with inactivated, purified chick embryo cell rabies vaccine in healthy adults

Phadke, Varun K; Gromer, Daniel J; Rebolledo, Paulina A; Graciaa, Daniel S; Wiley, Zanthia; Sherman, Amy C; Scherer, Erin M; Leary, Maranda; Girmay, Tigisty; McCullough, Michele P; Min, Ji-Young; Capone, Stefania; Sommella, Andrea; Vitelli, Alessandra; Retallick, Jamie; Seetahal, Janine; Koller, Mark; Tsong, Rachel; Neill-Gubitz, Hannah; Mulligan, Mark J; Rouphael, Nadine G
BACKGROUND:Rabies is a zoonotic viral encephalitis that is endemic in many countries and confers a high mortality. Licensed vaccines require several doses to ensure efficacy. To investigate a logistically favorable approach, we assessed the safety and immunogenicity of ChAd155-RG, a novel investigational rabies vaccine using a replication-defective chimpanzee adenovirus vector. METHODS:We conducted a first-in-human, phase 1, randomized, double-blind, dose-escalation trial comparing ChAd155-RG with a licensed inactivated vaccine (RabAvert) in healthy adults. Participants received either RabAvert at standard dosing or ChAd155-RG at a low dose for one immunization or a high dose for one or two immunizations. To assess safety, we evaluated reactogenicity, unsolicited adverse events, and thrombotic events. To measure immunogenicity, we measured rabies viral neutralizing antibody (VNA) titers and anti-ChAd155 neutralizing antibodies. RESULTS:Mild to moderate systemic reactogenicity and transient lymphopenia and neutropenia were more common among recipients of ChAd155-RG compared with those who received RabAvert. No thrombotic events or serious adverse events were reported. Only the groups receiving RabAvert or two doses of high-dose ChAd155-RG achieved 100 % seroconversion, and seroprotection was most durable in the RabAvert group. Most participants had preexisting anti-vector antibodies, which were boosted by ChAd155-RG. Baseline and post-vaccination anti-vector antibody titers were negatively associated with post-vaccination rabies VNA titers. CONCLUSIONS:In this phase 1 clinical trial, a novel rabies vaccine using a simian adenovirus vector was safe and tolerable, but generated lower, less durable rabies VNA titers than a standard inactivated rabies virus vaccine, which may be due to preexisting, anti-vector immunity.
PMID: 39418686
ISSN: 1873-2518
CID: 5718712

Safety and immunogenicity of a delayed booster dose of the rVSVΔG-ZEBOV-GP vaccine for prevention of Ebola virus disease: a multicentre, open-label, phase 2 randomised controlled trial

Davey, Richard T; Collins, Gary L; Rouphael, Nadine; Poliquin, Guillaume; McConnell, Rosemary; Grubbs, Gabrielle; Moir, Susan L; Langley, Joanne M; Teitelbaum, Marc; Hewlett, Angela L; McLellan, Susan L F; Bhadelia, Nahid; Raabe, Vanessa N; Mulligan, Mark J; Maljkovic Berry, Irina; Dighero-Kemp, Bonnie; Kurtz, Jonathan R; Hensley, Lisa E; Dozier, Nelson C E; Marron, Lindsay C B; DuChene, Alain; Kuhn, Jens H; Brown, Shawn K; Khurana, Surender; Lane, H Clifford; Neaton, James D
BACKGROUND:rVSVΔG-ZEBOV-GP is the first approved vaccine with clinical efficacy against Ebola virus disease. Although a seroprotective threshold has not been defined for those at occupational risk of exposure, the current vaccine strategy is to attain a sustained high level of antibody titres. The aim of this trial was to explore the effects of delayed boosting upon both the height and duration of antibody titres following primary immunisation. METHODS:plaque-forming unit per mL of VSVΔG-ZEBOV-GP. 18 months later, individuals who consented and were still eligible were randomly assigned 1:1 to receive either a homologous booster dose or no booster. Study visits for safety and serial blood collections for antibody titres were done on enrolled participants at months 0, 1, 3, 6, 12, 18, 19, 24, 30, and 36. Through July, 2021, a web-based application was used for randomisation, including assignments with schedules for each of the five sites using mixed permuted blocks. The trial was not masked to participants or site staff. The primary endpoint was a comparison of geometric mean titres (GMTs) of anti-Ebola virus glycoprotein IgG antibody at month 36 (ie, 18 months after randomisation) for all randomly assigned participants who completed the 36 months of follow-up (primary analysis cohort). Investigators were aware of antibody titres from baseline (enrolment) through month 18 but were masked to summary data by randomisation group after month 18. This study is registered with ClinicalTrials.gov (NCT02788227). FINDINGS/RESULTS:Of the 248 participants who enrolled and received their primary immunisation, 114 proceeded to the randomisation step at month 18. The two randomisation groups were balanced: 57 participants (24 [42%] of whom were female; median age was 42 years [IQR 35-50]) were randomly assigned to the booster group and 57 (24 [42%] of whom were female; median age was 42 years [IQR 36-51]) to the no-booster group. Of those randomly assigned, 92 participants (45 in the booster group and 47 in the no-booster group) completed 36 months of follow-up. At 18 months after primary immunisation, GMTs in the no-booster group increased from a baseline of 10 ELISA units (EU)/mL (95% CI 7-14) to 1451 EU/mL (1118-1882); GMTs in the booster group increased from 9 EU/mL (6-16) to 1769 EU/mL (1348-2321). At month 19, GMTs were 31 408 EU/mL (23 181-42 554) for the booster group and 1406 EU/mL (1078-1833) for the no-booster group; at month 36, GMTs were 10 146 EU/mL (7960-12 933) for the booster group and 1240 EU/mL (984-1563) for the no-booster group. Accordingly, the geometric mean ratio (GMR) of antibody titres had increased almost 21-fold more in the booster versus no-booster group at 1 month after booster administration (GMR 20·6; 95% CI 18·2-23·0; p<0·0001) and was still over 7-fold higher at month 36 (GMR 7·8; 95% CI 5·5-10·2; p<0·0001). Consistent with previous reports of this vaccine's side-effects, transient mono-articular or oligo-articular arthritis was diagnosed in 18 (9%) of 207 primary vaccination recipients; after randomisation, arthritis was diagnosed in one (2%) of 57 participants in the no-booster group. No new cases of arthritis developed after booster administration. Four serious adverse events occurred following randomisation: one (epistaxis) in the booster group and three (gastrointestinal haemorrhage, prostate cancer, and tachyarrhythmia) in the no-booster group. None of the serious adverse events was judged attributable to the booster vaccination assignment. INTERPRETATION/CONCLUSIONS:In addition to no new safety concerns and in marked contrast to earlier trials evaluating short-term boosting, delaying a rVSVΔG-ZEBOV-GP booster until month 18 resulted in an increase in GMT that remained several-fold above the no-booster group GMT for at least 18 months. These findings could have implications for defining the optimal timing of booster doses as pre-exposure prophylaxis in populations at ongoing risk for Ebola virus exposure. FUNDING/BACKGROUND:The Division of Intramural Research and the Division of Clinical Research of the National Institute of Allergy and Infectious Diseases at the US National Institutes of Health, Canadian Immunization Research Network through the Public Health Agency of Canada, Canadian Institutes of Health Research, and the US Defense Threat Reduction Agency.
PMID: 39374605
ISSN: 2666-5247
CID: 5705942

Vaccine Equity: Lessons Learned Exploring Facilitators and Barriers to COVID-19 Vaccination in Urban Black Communities

Parameswaran, Lalitha; Jaysing, Anna; Ding, Helen; Wilkenfeld, Marc; Dean, Ranekka; Wilson, Kesi K; Frank, Olivia; Duerr, Ralf; Mulligan, Mark J
COVID-19 vaccines were developed at unparalleled speed, but racial disparities persist in vaccine uptake. This is a cross-sectional survey that was conducted in mid-2021 in ambulatory clinics across Brooklyn, New York. The objectives of the study were to assess: knowledge of COVID-19, healthcare communication and access, attitudes including trust in the process of vaccine development and mistrust due to racial discrimination, and to determine the relationship of the above to vaccine receipt. 58 respondents self-identified as Black non-Hispanic and completed the survey: the majority were women (79%), <50 years old (65%), employed (66%), and had annual household income <$75,000 (59%). The majority reported having some health insurance (97%) and a regular place of healthcare (95%). 60% of respondents reported COVID-19 vaccination receipt. A significant percentage of the vaccinated group compared to the unvaccinated group scored higher on knowledge questions (91% vs. 65%; p = 0.018), felt it was important that others in the community get vaccinated (89% vs. 65%, p = 0.04), and trusted vaccine safety (86% vs. 35%; p < 0.0001) and effectiveness (88% vs. 48%; p < 0.001). The unvaccinated group reported a lower annual household income of <$75,000 (72% vs. 50%; p = 0.0002) and also differed by employment status (p = 0.04). Majority in both groups agreed that racial discrimination interferes with healthcare (78%). In summary, unvaccinated Black non-Hispanic respondents report significant concerns about vaccine safety and efficacy and have greater mistrust in the vaccine development process. The relationship between racial discrimination, mistrust, and vaccine hesitancy needs further study in order to improve vaccine uptake in this population.
PMID: 37391605
ISSN: 2196-8837
CID: 5540652

A Repurposed Drug Interferes with Nucleic Acid to Inhibit the Dual Activities of Coronavirus Nsp13

Soper, Nathan; Yardumian, Isabelle; Chen, Eric; Yang, Chao; Ciervo, Samantha; Oom, Aaron L; Desvignes, Ludovic; Mulligan, Mark J; Zhang, Yingkai; Lupoli, Tania J
The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlighted a critical need to discover more effective antivirals. While therapeutics for SARS-CoV-2 exist, its nonstructural protein 13 (Nsp13) remains a clinically untapped target. Nsp13 is a helicase responsible for unwinding double-stranded RNA during viral replication and is essential for propagation. Like other helicases, Nsp13 has two active sites: a nucleotide binding site that hydrolyzes nucleoside triphosphates (NTPs) and a nucleic acid binding channel that unwinds double-stranded RNA or DNA. Targeting viral helicases with small molecules, as well as the identification of ligand binding pockets, have been ongoing challenges, partly due to the flexible nature of these proteins. Here, we use a virtual screen to identify ligands of Nsp13 from a collection of clinically used drugs. We find that a known ion channel inhibitor, IOWH-032, inhibits the dual ATPase and helicase activities of SARS-CoV-2 Nsp13 at low micromolar concentrations. Kinetic and binding assays, along with computational and mutational analyses, indicate that IOWH-032 interacts with the RNA binding interface, leading to displacement of nucleic acid substrate, but not bound ATP. Evaluation of IOWH-032 with microbial helicases from other superfamilies reveals that it is selective for coronavirus Nsp13. Furthermore, it remains active against mutants representative of observed SARS-CoV-2 variants. Overall, this work provides a new inhibitor for Nsp13 and provides a rationale for a recent observation that IOWH-032 lowers SARS-CoV-2 viral loads in human cells, setting the stage for the discovery of other potent viral helicase modulators.
PMCID:11267572
PMID: 38980755
ISSN: 1554-8937
CID: 5698862

Longitudinal study of immunity to SARS-CoV2 in ocrelizumab-treated MS patients up to 2 years after COVID-19 vaccination

Kister, Ilya; Curtin, Ryan; Piquet, Amanda L; Borko, Tyler; Pei, Jinglan; Banbury, Barbara L; Bacon, Tamar E; Kim, Angie; Tuen, Michael; Velmurugu, Yogambigai; Nyovanie, Samantha; Selva, Sean; Samanovic, Marie I; Mulligan, Mark J; Patskovsky, Yury; Priest, Jessica; Cabatingan, Mark; Winger, Ryan C; Krogsgaard, Michelle; Silverman, Gregg J
OBJECTIVES/OBJECTIVE:(1) To plot the trajectory of humoral and cellular immune responses to the primary (two-dose) COVID-19 mRNA series and the third/booster dose in B-cell-depleted multiple sclerosis (MS) patients up to 2 years post-vaccination; (2) to identify predictors of immune responses to vaccination; and (3) to assess the impact of intercurrent COVID-19 infections on SARS CoV-2-specific immunity. METHODS:Sixty ocrelizumab-treated MS patients were enrolled from NYU (New York) and University of Colorado (Anschutz) MS Centers. Samples were collected pre-vaccination, and then 4, 12, 24, and 48 weeks post-primary series, and 4, 12, 24, and 48 weeks post-booster. Binding anti-Spike antibody responses were assessed with multiplex bead-based immunoassay (MBI) and electrochemiluminescence (Elecsys®, Roche Diagnostics), and neutralizing antibody responses with live-virus immunofluorescence-based microneutralization assay. Spike-specific cellular responses were assessed with IFNγ/IL-2 ELISpot (Invitrogen) and, in a subset, by sequencing complementarity determining regions (CDR)-3 within T-cell receptors (Adaptive Biotechnologies). A linear mixed-effect model was used to compare antibody and cytokine levels across time points. Multivariate analyses identified predictors of immune responses. RESULTS:The primary vaccination induced an 11- to 208-fold increase in binding and neutralizing antibody levels and a 3- to 4-fold increase in IFNγ/IL-2 responses, followed by a modest decline in antibody but not cytokine responses. Booster dose induced a further 3- to 5-fold increase in binding antibodies and 4- to 5-fold increase in IFNγ/IL-2, which were maintained for up to 1 year. Infections had a variable impact on immunity. INTERPRETATION/CONCLUSIONS:Humoral and cellular benefits of COVID-19 vaccination in B-cell-depleted MS patients were sustained for up to 2 years when booster doses were administered.
PMID: 38713096
ISSN: 2328-9503
CID: 5652462

SARS-CoV-2 inflammation durably imprints memory CD4 T cells

Gray-Gaillard, Sophie L; Solis, Sabrina M; Chen, Han M; Monteiro, Clarice; Ciabattoni, Grace; Samanovic, Marie I; Cornelius, Amber R; Williams, Tijaana; Geesey, Emilie; Rodriguez, Miguel; Ortigoza, Mila Brum; Ivanova, Ellie N; Koralov, Sergei B; Mulligan, Mark J; Herati, Ramin Sedaghat
Memory CD4 T cells are critical to human immunity, yet it is unclear whether viral inflammation during memory formation has long-term consequences. Here, we compared transcriptional and epigenetic landscapes of Spike (S)-specific memory CD4 T cells in 24 individuals whose first exposure to S was via SARS-CoV-2 infection or mRNA vaccination. Nearly 2 years after memory formation, S-specific CD4 T cells established by infection remained enriched for transcripts related to cytotoxicity and for interferon-stimulated genes, likely because of a chromatin accessibility landscape altered by inflammation. Moreover, S-specific CD4 T cells primed by infection had reduced proliferative capacity in vitro relative to vaccine-primed cells. Furthermore, the transcriptional state of S-specific memory CD4 T cells was minimally altered by booster immunization and/or breakthrough infection. Thus, infection-associated inflammation durably imprints CD4 T cell memory, which affects the function of these cells and may have consequences for long-term immunity.
PMID: 38905326
ISSN: 2470-9468
CID: 5672432

A Phase 2 Clinical Trial to Evaluate the Safety, Reactogenicity, and Immunogenicity of Different Prime-Boost Vaccination Schedules of 2013 and 2017 A(H7N9) Inactivated Influenza Virus Vaccines Administered with and without AS03 Adjuvant in Healthy US Adults

Rostad, Christina A; Atmar, Robert L; Walter, Emmanuel B; Frey, Sharon; Meier, Jeffery L; Sherman, Amy C; Lai, Lilin; Tsong, Rachel; Kao, Carol M; Raabe, Vanessa; El Sahly, Hana M; Keitel, Wendy A; Whitaker, Jennifer A; Smith, Michael J; Schmader, Kenneth E; Swamy, Geeta K; Abate, Getahun; Winokur, Patricia; Buchanan, Wendy; Cross, Kaitlyn; Wegel, Ashley; Xu, Yongxian; Yildirim, Inci; Kamidani, Satoshi; Rouphael, Nadine; Roberts, Paul C; Mulligan, Mark J; Anderson, Evan J
INTRODUCTION/BACKGROUND:A surge of human influenza A(H7N9) cases began in 2016 in China due to an antigenically distinct lineage. Data are needed about the safety and immunogenicity of 2013 and 2017 A(H7N9) inactivated influenza vaccines (IIVs) and the effects of AS03 adjuvant, prime-boost interval, and priming effects of 2013 and 2017 A(H7N9) IIVs. METHODS:Healthy adults (n=180), ages 19-50 years, were enrolled into this partially-blinded, randomized, multi-center Phase 2 clinical trial. Participants were randomly assigned to 1 of 6 vaccination groups evaluating homologous versus heterologous prime-boost strategies with two different boost intervals (21 versus 120 days) and two dosages (3.75 or 15 μg of hemagglutinin) administered with or without AS03 adjuvant. Reactogenicity, safety, and immunogenicity measured by hemagglutination inhibition (HAI) and neutralizing antibody titers were assessed. RESULTS:Two doses of A(H7N9) IIV were well tolerated, and no safety issues were identified. Although most participants had injection site and systemic reactogenicity, these symptoms were mostly mild to moderate in severity; injection site reactogenicity was greater in vaccination groups receiving adjuvant. Immune responses were greater after an adjuvanted second dose, and with a longer interval between prime and boost. The highest HAI GMT (95%CI) observed against the 2017 A(H7N9) strain was 133.4 (83.6, 212.6) among participants who received homologous, adjuvanted 3.75 ug+AS03/2017 doses with delayed boost interval. CONCLUSIONS:Administering AS03 adjuvant with the second H7N9 IIV dose and extending the boost interval to 4 months resulted in higher peak antibody responses. These observations can broadly inform strategic approaches for pandemic preparedness. (NCT03589807).
PMID: 38537255
ISSN: 1537-6591
CID: 5644952