Try a new search

Format these results:

Searched for:

in-biosketch:true

person:oermae01

Total Results:

143


Neuro Data Hub: A New Approach for Streamlining Medical Clinical Research

Han, Xu; Alyakin, Anton; Ciprut, Shannon; Lapierre, Cathryn; Stryker, Jaden; Golfinos, John; Kondziolka, Douglas; Oermann, Eric Karl
BACKGROUND AND OBJECTIVES/OBJECTIVE:Neurosurgical clinical research depends on medical data collection and evaluation that is often laborious, time consuming, and inefficient. The goal of this work was to implement and evaluate a novel departmental data infrastructure (Neuro Data Hub) designed to provide specialized data services for neurosurgical research. Data acquisition would become available purely by request. METHODS:through collaboration between Department Leadership and Medical Center Information Technology, integrating it with Institutional Review Board workflows and an existing Epic electronic health record Datalake infrastructure. The system implementation included monthly departmental meetings and an asynchronous Research Electronic Data Capture-based request system. Data requests submitted between August 2023 and November 2024 were analyzed and categorized as basic, complex, or Natural Language Processing (NLP)-augmented, with optional visualization and database creation services. Request volumes, types, and execution times were assessed. RESULTS:The Hub processed 39 research data requests (2.6/month), comprising 3 basic, 22 complex, and 14 NLP-augmented requests. Two complex requests included visualization services, and one NLP request included database creation. Average request execution time was 36.5 days, with NLP-augmented requests showing increasing adoption over time. CONCLUSION/CONCLUSIONS:The Neuro Data Hub represents a paradigm shift from centralized to department-level data services, providing specialized support for neurosurgical research and democratizing access to institutional data. While effective, implementation may be limited by institutional information technology infrastructure requirements. This model could serve as a template for any form of medical-clinical research program seeking to improve data accessibility and research capabilities.
PMCID:12560744
PMID: 41163737
ISSN: 2834-4383
CID: 5961452

Most Roads Lead to Cushing: Mapping Neurosurgical Training Lineages in the United States

Kurland, David B; Park, Minjun; Gajjar, Avi A; Liu, Albert; Kondziolka, Douglas; Golfinos, John G; Alleyne, Cargill H; Oermann, Eric K
OBJECTIVE:Mentorship and training relationships shape the careers and influence of neurosurgeons. Network analysis can reveal structural characteristics and key individuals who support network connectivity and drive the field's development. This endeavor analyzed the U.S.-based neurosurgical training network derived from NeurosurGen.com. METHODS:A network graph was constructed representing neurosurgical training relationships, including chairperson-trainee, program director-trainee, and coresident connections. Graph- and node-level metrics, with a focus on centrality measures, were calculated for a trainer-trainee subgraph. RESULTS:The network consisted of 8840 neurosurgeons represented as nodes, and 382,143 relationships represented as edges. It evolved from an early small-world structure to a hierarchical and decentralized structure dominated by local clusters. Demographic shifts over time reflected increasing diversity and inclusion, with greater representation of female, Hispanic, Asian, and Black trainees across 285 training programs. Nodes were preferentially connected via residency, and the connectivity among underrepresented populations improved in concert with increased representation. Harvey W. Cushing was the quintessential neurosurgeon-influencer in the United States, ranking highly across most centrality measures over time. CONCLUSIONS:The neurosurgical training network is sparse but interconnected, typical of large real-world professional networks. While many small groups of neurosurgeons are closely tied within their immediate training hierarchy and peer group, in modern neurosurgery, each surgeon is only connected to a small fraction of the total network. Highly central individuals have played critical roles in linking disparate groups and shaping network structure. Increasing diversity in recent decades indicates progress toward inclusivity, although overall representation remains low.
PMID: 40914191
ISSN: 1878-8769
CID: 5966272

A full life cycle biological clock based on routine clinical data and its impact in health and diseases

Wang, Kai; Liu, Fei; Wu, Wei; Hu, Changxi; Shen, Xian; Wang, Meihao; Li, Gen; Zeng, Fanxin; Liu, Li; Wong, Io Nam; Liu, Sian; Zou, Zixing; Li, Bingzhou; Li, Jinghang; Huang, Xiaoying; Jin, Shengwei; Li, Zhuomin; Xu, Hui; Chen, Gang; Chen, Xiaodong; Zhu, Ying; Li, Ping; Feng, Zhe; Wang, Winston; Cheng, Linling; Yang, Mingqi; Hou, Qiang; Lu, Wenyang; Sun, Yiwen; Li, Kun; Zhong, Tian; Sun, Zhuo; Yin, Yun; Loupy, Alexandre; Oermann, Eric; Chen, Xiangmei; Zhang, Kang; ,
Aging research has primarily focused on adult aging clocks, leaving a critical gap in understanding a biological clock across the full life cycle, particularly during infancy and childhood. Here we introduce LifeClock, a biological clock model that predicts biological age across all life stages using routine electronic health records and laboratory test data. To enhance individualized predictions, we integrated virtual patient representations from 24,633,025 heterogeneous longitudinal clinical visits across 9,680,764 individuals and projected them into a latent space. Our approach leverages EHRFormer, a time-series transformer-based model, to analyze developmental and aging dynamics with high precision and develop accurate biological age clocks spanning infancy to old age. Our findings reveal distinct biological clock patterns across different life stages. The pediatric clock is strongly associated with children's development and accurately predicts current and future risks of major pediatric diseases, including malnutrition, growth and developmental abnormalities. The adult clock is strongly associated with aging and accurately predicts current and future risks of major age-related diseases, such as diabetes, renal failure, stroke and cardiovascular diseases. This work therefore distinguishes pediatric development from adult aging, establishing a novel framework to advance precision health by leveraging routine clinical data across the entire lifespan.
PMID: 41145791
ISSN: 1546-170x
CID: 5961022

Automating the Referral of Bone Metastases Patients With and Without the Use of Large Language Models

Sangwon, Karl L; Han, Xu; Becker, Anton; Zhang, Yuchong; Ni, Richard; Zhang, Jeff; Alber, Daniel Alexander; Alyakin, Anton; Nakatsuka, Michelle; Fabbri, Nicola; Aphinyanaphongs, Yindalon; Yang, Jonathan T; Chachoua, Abraham; Kondziolka, Douglas; Laufer, Ilya; Oermann, Eric Karl
BACKGROUND AND OBJECTIVES/OBJECTIVE:Bone metastases, affecting more than 4.8% of patients with cancer annually, and particularly spinal metastases require urgent intervention to prevent neurological complications. However, the current process of manually reviewing radiological reports leads to potential delays in specialist referrals. We hypothesized that natural language processing (NLP) review of routine radiology reports could automate the referral process for timely multidisciplinary care of spinal metastases. METHODS:We assessed 3 NLP models-a rule-based regular expression (RegEx) model, GPT-4, and a specialized Bidirectional Encoder Representations from Transformers (BERT) model (NYUTron)-for automated detection and referral of bone metastases. Study inclusion criteria targeted patients with active cancer diagnoses who underwent advanced imaging (computed tomography, MRI, or positron emission tomography) without previous specialist referral. We defined 2 separate tasks: task of identifying clinically significant bone metastatic terms (lexical detection), and identifying cases needing a specialist follow-up (clinical referral). Models were developed using 3754 hand-labeled advanced imaging studies in 2 phases: phase 1 focused on spine metastases, and phase 2 generalized to bone metastases. Standard McRae's line performance metrics were evaluated and compared across all stages and tasks. RESULTS:In the lexical detection, a simple RegEx achieved the highest performance (sensitivity 98.4%, specificity 97.6%, F1 = 0.965), followed by NYUTron (sensitivity 96.8%, specificity 89.9%, and F1 = 0.787). For the clinical referral task, RegEx also demonstrated superior performance (sensitivity 92.3%, specificity 87.5%, and F1 = 0.936), followed by a fine-tuned NYUTron model (sensitivity 90.0%, specificity 66.7%, and F1 = 0.750). CONCLUSION/CONCLUSIONS:An NLP-based automated referral system can accurately identify patients with bone metastases requiring specialist evaluation. A simple RegEx model excels in syntax-based identification and expert-informed rule generation for efficient referral patient recommendation in comparison with advanced NLP models. This system could significantly reduce missed follow-ups and enhance timely intervention for patients with bone metastases.
PMID: 40823772
ISSN: 1524-4040
CID: 5908782

Introduction. Artificial intelligence in neurosurgery: transforming a data-intensive specialty

Hopkins, Benjamin S; Sutherland, Garnette R; Browd, Samuel R; Donoho, Daniel A; Oermann, Eric K; Schirmer, Clemens M; Pennicooke, Brenton; Asaad, Wael F
PMID: 40591964
ISSN: 1092-0684
CID: 5887762

Outcomes of concurrent versus non-concurrent immune checkpoint inhibition with stereotactic radiosurgery for melanoma brain metastases

Fu, Allen Ye; Bernstein, Kenneth; Zhang, Jeff; Silverman, Joshua; Mehnert, Janice; Sulman, Erik P; Oermann, Eric Karl; Kondziolka, Douglas
PURPOSE/OBJECTIVE:Immune checkpoint inhibition (ICI) has revolutionized the treatment of melanoma care. Stereotactic radiosurgery combined with ICI has shown promise to improve clinical outcomes in prior studies in patients who have metastatic melanoma with brain metastases. However, others have suggested that concurrent ICI with stereotactic radiosurgery can increase the risk of complications. METHODS:We present a retrospective, single-institution analysis of 98 patients with a median follow up of 17.1 months managed with immune checkpoint inhibition and stereotactic radiosurgery concurrently and non-concurrently. A total of 55 patients were included in the concurrent group and 43 patients in the non-concurrent treatment group. Cox proportional hazards models were used to assess the relation between concurrent or non-concurrent treatment and overall survival or local progression-free survival. The Wald test was used to assess significance. Significant differences between patients in both groups experiencing adverse events including adverse radiation effects, perilesional edema, and neurological deficits were tested for using the Chi-square or Fisher's exact test. RESULTS:Patients receiving concurrent versus non-concurrent ICI showed a significant increase in overall survival (median 37.1 months, 95% CI: 18.9 months - NA versus median 11.4 months, 95% CI: 6.4-33.2 months, p = 0.0056) but not local progression-free survival. There were no significant differences between groups with regards to adverse radiation effects (2% versus 3%), perilesional edema (20% versus 9%), neurological deficits (3% versus 20%). CONCLUSION/CONCLUSIONS:These results suggest that the timing of ICI does not increase risk of neurological complications when delivered within 4 weeks of SRS.
PMID: 40183901
ISSN: 1573-7373
CID: 5819412

Large-Scale Multi-omic Biosequence Transformers for Modeling Protein-Nucleic Acid Interactions

Chen, Sully F; Steele, Robert J; Hocky, Glen M; Lemeneh, Beakal; Lad, Shivanand P; Oermann, Eric K
The transformer architecture has revolutionized bioinformatics and driven progress in the understanding and prediction of the properties of biomolecules. To date, most biosequence transformers have been trained on a single omic-either proteins or nucleic acids and have seen incredible success in downstream tasks in each domain with particularly noteworthy breakthroughs in protein structural modeling. However, single-omic pre-training limits the ability of these models to capture cross-modal interactions. Here we present OmniBioTE, the largest open-source multi-omic model trained on over 250 billion tokens of mixed protein and nucleic acid data. We show that despite only being trained on unlabelled sequence data, OmniBioTE learns joint representations consistent with the central dogma of molecular biology. We further demonstrate that OmbiBioTE achieves state-of-the-art results predicting the change in Gibbs free energy (∆G) of the binding interaction between a given nucleic acid and protein. Remarkably, we show that multi-omic biosequence transformers emergently learn useful structural information without any a priori structural training, allowing us to predict which protein residues are most involved in the protein-nucleic acid binding interaction. Lastly, compared to single-omic controls trained with identical compute, OmniBioTE demonstrates superior performance-per-FLOP and absolute accuracy across both multi-omic and single-omic benchmarks, highlighting the power of a unified modeling approach for biological sequences.
PMCID:11998858
PMID: 40236839
ISSN: 2331-8422
CID: 5883432

CNS-CLIP: Transforming a Neurosurgical Journal Into a Multimodal Medical Model

Alyakin, Anton; Kurland, David; Alber, Daniel Alexander; Sangwon, Karl L; Li, Danxun; Tsirigos, Aristotelis; Leuthardt, Eric; Kondziolka, Douglas; Oermann, Eric Karl
BACKGROUND AND OBJECTIVES/OBJECTIVE:Classical biomedical data science models are trained on a single modality and aimed at one specific task. However, the exponential increase in the size and capabilities of the foundation models inside and outside medicine shows a shift toward task-agnostic models using large-scale, often internet-based, data. Recent research into smaller foundation models trained on specific literature, such as programming textbooks, demonstrated that they can display capabilities similar to or superior to large generalist models, suggesting a potential middle ground between small task-specific and large foundation models. This study attempts to introduce a domain-specific multimodal model, Congress of Neurological Surgeons (CNS)-Contrastive Language-Image Pretraining (CLIP), developed for neurosurgical applications, leveraging data exclusively from Neurosurgery Publications. METHODS:We constructed a multimodal data set of articles from Neurosurgery Publications through PDF data collection and figure-caption extraction using an artificial intelligence pipeline for quality control. Our final data set included 24 021 figure-caption pairs. We then developed a fine-tuning protocol for the OpenAI CLIP model. The model was evaluated on tasks including neurosurgical information retrieval, computed tomography imaging classification, and zero-shot ImageNet classification. RESULTS:CNS-CLIP demonstrated superior performance in neurosurgical information retrieval with a Top-1 accuracy of 24.56%, compared with 8.61% for the baseline. The average area under receiver operating characteristic across 6 neuroradiology tasks achieved by CNS-CLIP was 0.95, slightly superior to OpenAI's Contrastive Language-Image Pretraining at 0.94 and significantly outperforming a vanilla vision transformer at 0.62. In generalist classification, CNS-CLIP reached a Top-1 accuracy of 47.55%, a decrease from the baseline of 52.37%, demonstrating a catastrophic forgetting phenomenon. CONCLUSION/CONCLUSIONS:This study presents a pioneering effort in building a domain-specific multimodal model using data from a medical society publication. The results indicate that domain-specific models, while less globally versatile, can offer advantages in specialized contexts. This emphasizes the importance of using tailored data and domain-focused development in training foundation models in neurosurgery and general medicine.
PMID: 39636129
ISSN: 1524-4040
CID: 5780182

Intraoperative Evaluation of Dural Arteriovenous Fistula Obliteration Using FLOW 800 Hemodynamic Analysis

Sangwon, Karl L; Grin, Eric A; Negash, Bruck; Wiggan, Daniel D; Lapierre, Cathryn; Raz, Eytan; Shapiro, Maksim; Laufer, Ilya; Sharashidze, Vera; Rutledge, Caleb; Riina, Howard A; Oermann, Eric K; Nossek, Erez
BACKGROUND AND OBJECTIVES/OBJECTIVE:Dural arteriovenous fistula (dAVF) surgery is a microsurgical procedure that requires confirmation of obliteration using formal cerebral angiography, but the lack of intraoperative angiogram or need for postoperative angiogram in some settings necessitates a search for alternative, less invasive methods to verify surgical success. This study evaluates the use of indocyanine green videoangiography FLOW 800 hemodynamic intraoperatively during cranial and spinal dAVF obliteration to confirm obliteration and predict surgical success. METHODS:A retrospective analysis was conducted using indocyanine green videoangiography FLOW 800 to intraoperatively measure 4 hemodynamic parameters-Delay Time, Speed, Time to Peak, and Rise Time-across venous drainage regions of interest pre/post-dAVF obliteration. Univariate and multivariate statistical analyses to evaluate and visualize presurgical vs postsurgical state hemodynamic changes included nonparametric statistical tests, logistic regression, and Bayesian analysis. RESULTS:A total of 14 venous drainage regions of interest from 8 patients who had successful spinal or cranial dAVF obliteration confirmed with intraoperative digital subtraction angiography were extracted. Significant hemodynamic changes were observed after dAVF obliteration, with median Speed decreasing from 13.5 to 5.5 s-1 (P = .029) and Delay Time increasing from 2.07 to 7.86 s (P = .020). Bayesian logistic regression identified Delay Time as the strongest predictor of postsurgical state, with a 50% increase associated with 2.16 times higher odds of achieving obliteration (odds ratio = 4.59, 95% highest density interval: 1.07-19.95). Speed exhibited a trend toward a negative association with postsurgical state (odds ratio = 0.62, 95% highest density interval: 0.26-1.42). Receiver operating characteristic-area under the curve analysis using logistic regression demonstrated a score of 0.760, highlighting Delay Time and Speed as key features distinguishing preobliteration and postobliteration states. CONCLUSION/CONCLUSIONS:Our findings demonstrate that intraoperative FLOW 800 analysis reliably quantifies and visualizes immediate hemodynamic changes consistent with dAVF obliteration. Speed and Delay Time emerged as key indicators of surgical success, highlighting the potential of FLOW 800 as a noninvasive adjunct to traditional imaging techniques for confirming dAVF obliteration intraoperatively.
PMID: 40434390
ISSN: 2332-4260
CID: 5855352

MetaGP: A generative foundation model integrating electronic health records and multimodal imaging for addressing unmet clinical needs

Liu, Fei; Zhou, Hongyu; Wang, Kai; Yu, Yunfang; Gao, Yuanxu; Sun, Zhuo; Liu, Sian; Sun, Shanshan; Zou, Zixing; Li, Zhuomin; Li, Bingzhou; Miao, Hanpei; Liu, Yang; Hou, Taiwa; Fok, Manson; Patil, Nivritti Gajanan; Xue, Kanmin; Li, Ting; Oermann, Eric; Yin, Yun; Duan, Lian; Qu, Jia; Huang, Xiaoying; Jin, Shengwei; Zhang, Kang
Artificial intelligence makes strides in specialized diagnostics but faces challenges in complex clinical scenarios, such as rare disease diagnosis and emergency condition identification. To address these limitations, we develop Meta General Practitioner (MetaGP), a 32-billion-parameter generative foundation model trained on extensive datasets, including over 8 million electronic health records, biomedical literature, and medical textbooks. MetaGP demonstrates robust diagnostic capabilities, achieving accuracy comparable to experienced clinicians. In rare disease cases, it achieves an average diagnostic score of 1.57, surpassing GPT-4's 0.93. For emergency conditions, it improves diagnostic accuracy for junior and mid-level clinicians by 53% and 46%, respectively. MetaGP also excels in generating medical imaging reports, producing high-quality outputs for chest X-rays and computed tomography, often rated comparable to or superior to physician-authored reports. These findings highlight MetaGP's potential to transform clinical decision-making across diverse medical contexts.
PMID: 40187356
ISSN: 2666-3791
CID: 5819502