Searched for: in-biosketch:true
person:wisnit01
Choroid plexus aging: structural and vascular insights from the HCP-aging dataset
Sun, Zhe; Li, Chenyang; Zhang, Jiangyang; Wisniewski, Thomas; Ge, Yulin
BACKGROUND:The choroid plexus (ChP), a highly vascularized structure within the ventricles, is essential for cerebrospinal fluid (CSF) production and metabolic waste clearance, crucial for neurofluid homeostasis and cognitive function. ChP enlargement is seen in normal aging and neurodegenerative diseases like Alzheimer's disease (AD). Despite its key role of in the blood-CSF barrier (BCSFB), detailed studies on age-related changes in its perfusion and microstructure remain limited. METHODS:We analyzed data from 641 healthy individuals aged between 36 and 90, using the Human Connectome Project Aging (HCP-A) dataset. Volumetric, perfusion, and diffusion metrics of the ChP were derived from structural MRI, arterial spin labeling (ASL), and diffusion-weighted imaging (DWI), respectively. Partial correlations were used to explore age-related ChP changes, and independent t-tests to examine sex differences across age decades. One-way ANOVA was employed to compare perfusion characteristics among ChP, gray matter (GM), and white matter (WM). Relationships between volume, perfusion, and diffusion were investigated, adjusting for age and sex. Additionally, the distribution of cyst-like structures within the ChP and their diffusion/perfusion MRI characteristics were analyzed across different age groups. RESULTS: = 0.16, P < 0.001). Perfusion characteristics showed significant differences between the ChP, GM, and WM (P < 0.001). Both the ChP and GM exhibited age-related declines in CBF, with a more pronounced decline in the ChP. A negative correlation was observed between the age-related increase in ChP volume and the decrease in CBF, suggesting compensatory dystrophic hyperplasia in response to perfusion decline. Cyst-like structures in ChP, characterized by lower MD and reduced CBF, were found to be more prevalent in older individuals. CONCLUSIONS:Our findings provide a detailed quantitative assessment of age-related changes in ChP perfusion and diffusion, which may affect CSF production and circulation, potentially leading to waste solute accumulation and cognitive impairment. GRANT SUPPORT/UNASSIGNED:This work was supported in part by the NIH U01AG052564, P30AG066512, P01AG060882, RF1 NS110041, R01 NS108491, U24 NS135568.
PMCID:11619641
PMID: 39639335
ISSN: 2045-8118
CID: 5763822
Vascular Aging in the Choroid Plexus: A 7T Ultrasmall Superparamagnetic Iron Oxide (USPIO)-MRI Study
Sun, Zhe; Li, Chenyang; Muccio, Marco; Jiang, Li; Masurkar, Arjun; Buch, Sagar; Chen, Yongsheng; Zhang, Jiangyang; Haacke, E Mark; Wisniewski, Thomas; Ge, Yulin
BACKGROUND:The choroid plexus (ChP), a densely vascularized structure, has drawn increasing attention for its involvement in brain homeostasis and waste clearance. While the volumetric changes have been explored in many imaging studies, few studies have investigated the vascular degeneration associated with aging in the ChP. PURPOSE/OBJECTIVE:To investigate the sub-structural characteristics of the ChP, particularly the vascular compartment using high-resolution 7T imaging enhanced with Ferumoxytol, an ultrasmall super-paramagnetic iron oxide, which greatly increase the susceptibility contrast for vessels. STUDY TYPE/METHODS:Prospective. SUBJECTS/METHODS:Forty-nine subjects without neurological disorders (age: 21-80 years; 42 ± 17 years; 20 females). FIELD STRENGTH/SEQUENCE/UNASSIGNED:7-T with 2D and 3D T2* GRE, 3D MPRAGE T1, 2D TSE T2, and 2D FLAIR. ASSESSMENT/RESULTS:ratio) and susceptibility change (Δχ) induced by Ferumoxytol were analyzed on 3D GRE-derived susceptibility-weighted imaging and quantitative susceptibility mapping, respectively. STATISTICAL TESTS/METHODS:Independent t-test, Mann-Whitney U test, and Chi-square test were utilized for group comparisons. The relationship between age and ChP's vascular alterations was examined using Pearson's correlation. Intra-class coefficient was calculated for inter-observer agreement. A P value <0.05 was considered statistically significant. RESULTS:2D GRE images demonstrated superior contrast and accurate delineation of ChP substructures (ICC = 0.86). Older subjects exhibited a significantly smaller vascular density (16.5 ± 4.34%) and lower Δχ (22.10 ± 12.82 ppb) compared to younger subjects (24.85 ± 6.84% and 34.64 ± 12.69 ppb). Vascular density and mean Δχ within the ChP negatively correlated with age (r = -0.48, and r = -0.45). DATA CONCLUSION/CONCLUSIONS:Ferumoxytol-enhanced 7T images can demonstrate ChP alterations in elderly with decreased vascular density and expansion of nonvascular compartment. EVIDENCE LEVEL/METHODS:1 TECHNICAL EFFICACY: Stage 2.
PMID: 38587279
ISSN: 1522-2586
CID: 5646032
Raphe and ventrolateral medulla proteomics in sudden unexplained death in childhood with febrile seizure history
Leitner, Dominique F; William, Christopher; Faustin, Arline; Kanshin, Evgeny; Snuderl, Matija; McGuone, Declan; Wisniewski, Thomas; Ueberheide, Beatrix; Gould, Laura; Devinsky, Orrin
Sudden unexplained death in childhood (SUDC) is death of a child ≥ 12 months old that is unexplained after autopsy and detailed analyses. Among SUDC cases, ~ 30% have febrile seizure (FS) history, versus 2-5% in the general population. SUDC cases share features with sudden unexpected death in epilepsy (SUDEP) and sudden infant death syndrome (SIDS), in which brainstem autonomic dysfunction is implicated. To understand whether brainstem protein changes are associated with FS history in SUDC, we performed label-free quantitative mass spectrometry on microdissected midbrain dorsal raphe, medullary raphe, and the ventrolateral medulla (n = 8 SUDC-noFS, n = 11 SUDC-FS). Differential expression analysis between SUDC-FS and SUDC-noFS at p < 0.05 identified 178 altered proteins in dorsal raphe, 344 in medullary raphe, and 100 in the ventrolateral medulla. These proteins were most significantly associated with increased eukaryotic translation initiation (p = 3.09 × 10-7, z = 1.00), eukaryotic translation elongation (p = 6.31 × 10-49, z = 6.01), and coagulation system (p = 1.32 × 10-5, z = 1.00). The medullary raphe had the strongest enrichment for altered signaling pathways, including with comparisons to three other brain regions previously analyzed (frontal cortex, hippocampal dentate gyrus, cornu ammonus). Immunofluorescent tissue analysis of serotonin receptors identified 2.1-fold increased 5HT2A in the medullary raphe of SUDC-FS (p = 0.025). Weighted gene correlation network analysis (WGCNA) of case history indicated that longer FS history duration significantly correlated with protein levels in the medullary raphe and ventrolateral medulla; the most significant gene ontology biological processes were decreased cellular respiration (p = 9.8 × 10-5, corr = - 0.80) in medullary raphe and decreased synaptic vesicle cycle (p = 1.60 × 10-7, corr = - 0.90) in the ventrolateral medulla. Overall, FS in SUDC was associated with more protein differences in the medullary raphe and was related with increased translation-related signaling pathways. Future studies should assess whether these changes result from FS or may in some way predispose to FS or SUDC.
PMCID:11604820
PMID: 39607506
ISSN: 1432-0533
CID: 5763572
The relationship between anxiety and levels of Alzheimer's disease plasma biomarkers
Bernard, Mark A; Boutajangout, Allal; Debure, Ludovic; Ahmed, Wajiha; Briggs, Anthony Q; Boza-Calvo, Carolina; Vedvyas, Alok; Marsh, Karyn; Bubu, Omonigho M; Osorio, Ricardo S; Wisniewski, Thomas; Masurkar, Arjun V
Anxiety is highly prevalent in Alzheimer's disease (AD), correlating with cerebrospinal fluid/positron emission tomography biomarkers and disease progression. Relationships to plasma biomarkers are unclear. Herein, we compare levels of plasma biomarkers in research participants with and without anxiety at cognitively normal, mild cognitive impairment, and AD dementia stages. We observed significantly higher plasma tau/amyloid-β42 ratio in AD participants with anxiety versus those without, but did not observe differences at other stages or plasma biomarkers. No such relationships were evident with depression. These results support a unique pathophysiological relationship between anxiety and AD that can be reflected in plasma biomarkers, suggestive of heightened neurodegeneration.
PMID: 39604275
ISSN: 1875-8908
CID: 5759182
SMOC1 colocalizes with Alzheimer's disease neuropathology and delays Aβ aggregation
Balcomb, Kaleah; Johnston, Caitlin; Kavanagh, Tomas; Leitner, Dominique; Schneider, Julie; Halliday, Glenda; Wisniewski, Thomas; Sunde, Margaret; Drummond, Eleanor
SMOC1 has emerged as one of the most significant and consistent new biomarkers of early Alzheimer's disease (AD). Recent studies show that SMOC1 is one of the earliest changing proteins in AD, with levels in the cerebrospinal fluid increasing many years before symptom onset. Despite this clear association with disease, little is known about the role of SMOC1 in AD or its function in the brain. Therefore, the aim of this study was to examine the distribution of SMOC1 in human AD brain tissue and to determine if SMOC1 influenced amyloid beta (Aβ) aggregation. The distribution of SMOC1 in human brain tissue was assessed in 3 brain regions (temporal cortex, hippocampus, and frontal cortex) using immunohistochemistry in a cohort of 73 cases encompassing advanced AD, mild cognitive impairment (MCI), preclinical AD, and cognitively normal controls. The Aβ- and phosphorylated tau-interaction with SMOC1 was assessed in control, MCI, and advanced AD human brain tissue using co-immunoprecipitation, and the influence of SMOC1 on Aβ aggregation kinetics was assessed using Thioflavin-T assays and electron microscopy. SMOC1 strongly colocalized with a subpopulation of amyloid plaques in AD (43.8 ± 2.4%), MCI (32.8 ± 5.4%), and preclinical AD (28.3 ± 6.4%). SMOC1 levels in the brain strongly correlated with plaque load, irrespective of disease stage. SMOC1 also colocalized with a subpopulation of phosphorylated tau aggregates in AD (9.6 ± 2.6%). Co-immunoprecipitation studies showed that SMOC1 strongly interacted with Aβ in human MCI and AD brain tissue and with phosphorylated tau in human AD brain tissue. Thioflavin-T aggregation assays showed that SMOC1 significantly delayed Aβ aggregation in a dose-dependent manner, and electron microscopy confirmed that the Aβ fibrils generated in the presence of SMOC1 had an altered morphology. Overall, our results emphasize the importance of SMOC1 in the onset and progression of AD and suggest that SMOC1 may influence pathology development in AD.
PMID: 39585417
ISSN: 1432-0533
CID: 5763452
Lewy pathology formation in patient-derived GBA1 Parkinson's disease midbrain organoids
Frattini, Emanuele; Faustini, Gaia; Lopez, Gianluca; Carsana, Emma V; Tosi, Mattia; Trezzi, Ilaria; Magni, Manuela; Soldà , Giulia; Straniero, Letizia; Facchi, Daniele; Samarani, Maura; Martá-Ariza, Mitchell; De Luca, Chiara M G; Vezzoli, Elena; Pittaro, Alessandra; Stepanyan, Astghik; Silipigni, Rosamaria; Rosety, Isabel; Schwamborn, Jens C; Sardi, Sergio P; Moda, Fabio; Corti, Stefania; Comi, Giacomo P; Blandini, Fabio; Tritsch, Nicolas X; Bortolozzi, Mario; Ferrero, Stefano; Cribiù, Fulvia M; Wisniewski, Thomas; Asselta, Rosanna; Aureli, Massimo; Bellucci, Arianna; Di Fonzo, Alessio
Fibrillary aggregation of α-synuclein in Lewy body inclusions and nigrostriatal dopaminergic neuron degeneration define Parkinson's disease neuropathology. Mutations in GBA1, encoding glucocerebrosidase, are the most frequent genetic risk factor for Parkinson's disease. However, the lack of reliable experimental models able to reproduce key neuropathological signatures has hampered the clarification of the link between mutant glucocerebrosidase and Parkinson's disease pathology. Here, we describe an innovative protocol for the generation of human induced pluripotent stem cell-derived midbrain organoids containing dopaminergic neurons with nigral identity that reproduce characteristics of advanced maturation. When applied to patients with GBA1-related Parkinson's disease, this method enabled the differentiation of midbrain organoids recapitulating dopaminergic neuron loss and fundamental features of Lewy body pathology observed in human brains, including the generation of α-synuclein fibrillary aggregates with seeding activity that also propagate pathology in healthy control organoids. Still, we observed that the retention of mutant glucocerebrosidase in the endoplasmic reticulum and increased levels of its substrate glucosylceramide are determinants of α-synuclein aggregation into Lewy body-like inclusions. Consistently, the reduction of glucocerebrosidase activity accelerated α-synuclein pathology by promoting fibrillary α-synuclein deposition. Finally, we demonstrated the efficacy of ambroxol and GZ667161 - two modulators of the glucocerebrosidase pathway in clinical development for the treatment of GBA1-related Parkinson's disease - in reducing α-synuclein pathology in this model, supporting the use of midbrain organoids as a relevant pre-clinical platform for investigational drug screening.
PMID: 39570889
ISSN: 1460-2156
CID: 5758782
Alzheimer Disease-Related Biomarkers in Patients on Maintenance Hemodialysis
Masurkar, Arjun V; Bansal, Nisha; Prince, David K; Winkelmayer, Wolfgang C; Ortiz, Daniela F; Ramos, Gianna; Soomro, Qandeel; Vedvyas, Alok; Osorio, Ricardo S; Bernard, Mark A; Debure, Ludovic; Ahmed, Wajiha; Boutajangout, Allal; Wisniewski, Thomas; Charytan, David M
PMCID:11440795
PMID: 39350957
ISSN: 2590-0595
CID: 5703332
Role of Apolipoprotein E in Alzheimer's Disease Pathogenesis, Prognosis and Treatment
Reiss, Allison B; Housny, Mary; Gulkarov, Shelly; Hossain, Tahmina; Locke, Brandon; Srivastava, Ankita; Pinkhasov, Aaron; Gomolin, Irving H; Wisniewski, Thomas; De Leon, Joshua
Alzheimer's disease (AD) is an incurable and progressive neurodegenerative disease with increasing prevalence worldwide. Previous trials of anti-amyloid and anti-tau immunotherapy indicate that additional research needs to be conducted on other mechanisms to find curative or disease-modifying therapy. This review focuses on apolipoprotein E (ApoE), a critical protein in brain lipid metabolism that acts specifically in the clearance and transport of lipids and cholesterol. The ApoE4 allele confers substantial gene dose-dependent risk of developing AD and lowers the age of onset of AD, although the mechanisms of influence remain incompletely understood. The other isoforms bring different levels of AD risk. ApoE2 is protective while ApoE3 is the most common isoform and is considered neutral. An overview is presented of the latest information on the role of ApoE in AD pathogenesis with an emphasis on pathways that are involved in AD development and interactions with crucial processes in different cell types in the brain. Elucidating the key interactions of ApoE with multiple aspects of brain function can be useful for designing novel ApoE-targeted therapeutic approaches.
PMID: 39463215
ISSN: 1944-7930
CID: 5746642
Factors Affecting Resilience and Prevention of Alzheimer's Disease and Related Dementias
Masurkar, Arjun V; Marsh, Karyn; Morgan, Brianna; Leitner, Dominique; Wisniewski, Thomas
Alzheimer's disease (AD) is a devastating, age-associated neurodegenerative disorder and the most common cause of dementia. The clinical continuum of AD spans from preclinical disease to subjective cognitive decline, mild cognitive impairment, and dementia stages (mild, moderate, and severe). Neuropathologically, AD is defined by the accumulation of amyloid β (Aβ) into extracellular plaques in the brain parenchyma and in the cerebral vasculature, and by abnormally phosphorylated tau that accumulates intraneuronally forming neurofibrillary tangles (NFTs). Development of treatment approaches that prevent or even reduce the cognitive decline because of AD has been slow compared to other major causes of death. Recently, the United States Food and Drug Administration gave full approval to 2 different Aβ-targeting monoclonal antibodies. However, this breakthrough disease modifying approach only applies to a limited subset of patients in the AD continuum and there are stringent eligibility criteria. Furthermore, these approaches do not prevent progression of disease, because other AD-related pathologies, such as NFTs, are not directly targeted. A non-mutually exclusive alternative is to address lifestyle interventions that can help reduce the risk of AD and AD-related dementias (ADRD). It is estimated that addressing such modifiable risk factors could potentially delay up to 40% of AD/ADRD cases. In this review, we discuss some of the many modifiable risk factors that may be associated with prevention of AD/ADRD and/or increasing brain resilience, as well as other factors that may interact with these modifiable risk factors to influence AD/ADRD progression. ANN NEUROL 2024.
PMID: 39152774
ISSN: 1531-8249
CID: 5679752
Nilotinib as a Prospective Treatment for Alzheimer's Disease: Effect on Proteins Involved in Neurodegeneration and Neuronal Homeostasis
Srivastava, Ankita; Renna, Heather A; Johnson, Maryann; Sheehan, Katie; Ahmed, Saba; Palaia, Thomas; Pinkhasov, Aaron; Gomolin, Irving H; Wisniewski, Thomas; De Leon, Joshua; Reiss, Allison B
Nilotinib, a tyrosine kinase inhibitor that targets the Abelson tyrosine kinase (c-Abl) signaling pathway, is FDA-approved to treat chronic myeloid leukemia. Nilotinib has properties indicative of a possible utility in neuroprotection that have prompted exploration of repurposing the drug for the treatment of Alzheimer's disease (AD) and Parkinson's disease (PD). AD is a progressive age-related neurodegenerative disorder characterized by the deposition of extracellular amyloid-β plaques and intracellular neurofibrillary tangles. It is incurable and affects approximately 50 million patients worldwide. Nilotinib reduces c-Abl phosphorylation, amyloid-β levels, and dopaminergic neuron degeneration in preclinical AD models. This study explores the effects of nilotinib on amyloid processing and mitochondrial functioning in the SH-SY5Y human neuroblastoma cell line. SH-SY5Y cells were exposed to nilotinib (1, 5, and 10 µM). Real-time PCR and immunoblot analysis were performed to quantify the expression of genes pertaining to amyloid-β processing and neuronal health. Nilotinib did not significantly change APP, BACE1, or ADAM10 mRNA levels. However, BACE1 protein was significantly increased at 1 µM, and ADAM10 was increased at 10 µM nilotinib without affecting APP protein expression. Further, nilotinib treatment did not affect the expression of genes associated with neuronal health and mitochondrial functioning. Taken together, our findings do not support the efficacy of nilotinib treatment for neuroprotection.
PMCID:11509617
PMID: 39459541
ISSN: 2075-1729
CID: 5740392