Try a new search

Format these results:

Searched for:

in-biosketch:true

person:goldbi05

Total Results:

311


Plozasiran for Managing Persistent Chylomicronemia and Pancreatitis Risk

Watts, Gerald F; Rosenson, Robert S; Hegele, Robert A; Goldberg, Ira J; Gallo, Antonio; Mertens, Ann; Baass, Alexis; Zhou, Rong; Muhsin, Ma'an; Hellawell, Jennifer; Leeper, Nicholas J; Gaudet, Daniel; ,
BACKGROUND:Persistent chylomicronemia is a genetic recessive disorder that is classically caused by familial chylomicronemia syndrome (FCS), but it also has multifactorial causes. The disorder is associated with the risk of recurrent acute pancreatitis. Plozasiran is a small interfering RNA that reduces hepatic production of apolipoprotein C-III and circulating triglycerides. METHODS:In a phase 3 trial, we randomly assigned 75 patients with persistent chylomicronemia (with or without a genetic diagnosis) to receive subcutaneous plozasiran (25 mg or 50 mg) or placebo every 3 months for 12 months. The primary end point was the median percent change from baseline in the fasting triglyceride level at 10 months. Key secondary end points were the percent change in the fasting triglyceride level from baseline to the mean of values at 10 months and 12 months, changes in the fasting apolipoprotein C-III level from baseline to 10 months and 12 months, and the incidence of acute pancreatitis. RESULTS:At baseline, the median triglyceride level was 2044 mg per deciliter. At 10 months, the median change from baseline in the fasting triglyceride level (the primary end point) was -80% in the 25-mg plozasiran group, -78% in the 50-mg plozasiran group, and -17% in the placebo group (P<0.001). The key secondary end points showed better results in the plozasiran groups than in the placebo group, including the incidence of acute pancreatitis (odds ratio, 0.17; 95% confidence interval, 0.03 to 0.94; P = 0.03). The risk of adverse events was similar across groups; the most common adverse events were abdominal pain, nasopharyngitis, headache, and nausea. Severe and serious adverse events were less common with plozasiran than with placebo. Hyperglycemia with plozasiran occurred in some patients with prediabetes or diabetes at baseline. CONCLUSIONS:Patients with persistent chylomicronemia who received plozasiran had significantly lower triglyceride levels and a lower incidence of pancreatitis than those who received placebo. (Funded by Arrowhead Pharmaceuticals; PALISADE ClinicalTrials.gov number, NCT05089084.).
PMID: 39225259
ISSN: 1533-4406
CID: 5687742

Variation in lipoprotein(a) response to potent lipid lowering: The role of apolipoprotein (a) isoform size

Akinlonu, Adedoyin; Boffa, Michael B; Lyu, Chen; Zhong, Judy; Jindal, Manila; Fadzan, Maja; Garshick, Michael S; Schwartzbard, Arthur; Weintraub, Howard S; Bredefeld, Cindy; Newman, Jonathan D; Fisher, Edward A; Koschinsky, Marlys L; Goldberg, Ira J; Berger, Jeffrey S
BACKGROUND:Lipoprotein(a) [Lp(a)] is a driver of residual cardiovascular risk. Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) decrease Lp(a) with significant heterogeneity in response. We investigated contributors to the heterogeneous response. METHODS:CHOlesterol Reduction and Residual Risk in Diabetes (CHORD) was a prospective study examining lipid lowering in participants with a low-density lipoprotein cholesterol (LDL-C) >100 mg/dL with and without diabetes (DM) on lipid lowering therapy (LLT) for 30-days with evolocumab 140 mg every 14 days combined with either atorvastatin 80 mg or ezetimibe 10 mg daily. Lp(a) level was measured by immunoturbidometry, and the apolipoprotein (a) [apo(a)] isoform size was measured by denaturing agarose gel electrophoresis and western blotting. We examined the change in Lp(a) levels from baseline to 30 days. RESULTS:Among 150 participants (mean age 50 years, 58% female, 50% non-White, 17% Hispanic, 50% DM), median (interquartile range) Lp(a) was 27.5 (8-75) mg/dL at baseline and 23 (3-68) mg/dL at 30 days, leading to a 10% (0-36) median reduction (P < 0.001). Among 73 (49%) participants with Lp(a) ≥30 mg/dL at baseline, there was a 15% (3-25) median reduction in Lp(a) (P < 0.001). While baseline Lp(a) level was not correlated with change in Lp(a) (r = 0.04, P = 0.59), apo(a) size directly correlated with Lp(a) reduction (P < 0.001). After adjustment for age, sex, race/ethnicity, DM, and type of LLT, apo(a) size remained positively associated with a reduction in Lp(a) (Beta 0.95, 95% confidence interval, 0.93-0.97, P < 0.001). CONCLUSION/CONCLUSIONS:Our data demonstrate variation in Lp(a) reduction with potent LLT. Change in Lp(a) was strongly associated with apo(a) isoform size.
PMID: 39828454
ISSN: 1933-2874
CID: 5777992

Immune checkpoint landscape of human atherosclerosis and influence of cardiometabolic factors

Barcia Durán, José Gabriel; Das, Dayasagar; Gildea, Michael; Amadori, Letizia; Gourvest, Morgane; Kaur, Ravneet; Eberhardt, Natalia; Smyrnis, Panagiotis; Cilhoroz, Burak; Sajja, Swathy; Rahman, Karishma; Fernandez, Dawn M; Faries, Peter; Narula, Navneet; Vanguri, Rami; Goldberg, Ira J; Fisher, Edward A; Berger, Jeffrey S; Moore, Kathryn J; Giannarelli, Chiara
Immune checkpoint inhibitor (ICI) therapies can increase the risk of cardiovascular events in survivors of cancer by worsening atherosclerosis. Here we map the expression of immune checkpoints (ICs) within human carotid and coronary atherosclerotic plaques, revealing a network of immune cell interactions that ICI treatments can unintentionally target in arteries. We identify a population of mature, regulatory CCR7+FSCN1+ dendritic cells, similar to those described in tumors, as a hub of IC-mediated signaling within plaques. Additionally, we show that type 2 diabetes and lipid-lowering therapies alter immune cell interactions through PD-1, CTLA4, LAG3 and other IC targets in clinical development, impacting plaque inflammation. This comprehensive map of the IC interactome in healthy and cardiometabolic disease states provides a framework for understanding the potential adverse and beneficial impacts of approved and investigational ICIs on atherosclerosis, setting the stage for designing ICI strategies that minimize cardiovascular disease risk in cancer survivors.
PMCID:11634783
PMID: 39613875
ISSN: 2731-0590
CID: 5762162

Hyperchylomicronemia causes endothelial cell inflammation and increases atherosclerosis

Izquierdo, Maria Concepcion; Cabodevilla, Ainara G; Basu, Debapriya; Nasias, Dimitris; Kanter, Jenny E; Ho, Winnie; Gjini, Jana; Fisher, Edward A; Kim, Jeffrey; Lee, Warren; Bornfeldt, Karin E; Goldberg, Ira J
The effect of increased triglycerides (TGs) as an independent factor in atherosclerosis development has been contentious, in part, because severe hypertriglyceridemia associates with low levels of low-density lipoprotein cholesterol (LDL-C). To test whether hyperchylomicronemia, in the absence of markedly reduced LDL-C levels, contributes to atherosclerosis, we created mice with induced whole-body lipoprotein lipase (LpL) deficiency combined with LDL receptor (LDLR) deficiency. On an atherogenic Western-type diet (WD), male and female mice with induced global LpL deficiency (iLpl -/-) and LDLR knockdown (Ldlr
PMCID:11623764
PMID: 39649171
ISSN: 2693-5015
CID: 5769492

FITM2 deficiency results in ER lipid accumulation, ER stress, and reduced apolipoprotein B lipidation and VLDL triglyceride secretion in vitro and in mouse liver

Wang, Haizhen; Nikain, Cyrus; Fortounas, Konstantinos I; Amengual, Jaime; Tufanli, Ozlem; La Forest, Maxwell; Yu, Yong; Wang, Meng C; Watts, Russell; Lehner, Richard; Qiu, Yunping; Cai, Min; Kurland, Irwin J; Goldberg, Ira J; Rajan, Sujith; Hussain, M Mahmood; Brodsky, Jeffrey L; Fisher, Edward A
OBJECTIVES/OBJECTIVE:Triglycerides (TGs) associate with apolipoprotein B100 (apoB100) to form very low density lipoproteins (VLDLs) in the liver. The repertoire of factors that facilitate this association is incompletely understood. FITM2, an integral endoplasmic reticulum (ER) protein, was originally discovered as a factor participating in cytosolic lipid droplet (LD) biogenesis in tissues that do not form VLDL. We hypothesized that in the liver, in addition to promoting cytosolic LD formation, FITM2 would also transfer TG from its site of synthesis in the ER membrane to nascent VLDL particles within the ER lumen. METHODS:Experiments were conducted using a rat hepatic cell line (McArdle-RH7777, or McA cells), an established model of mammalian lipoprotein metabolism, and mice. FITM2 expression was reduced using siRNA in cells and by liver specific cre-recombinase mediated deletion of the Fitm2 gene in mice. Effects of FITM2 deficiency on VLDL assembly and secretion in vitro and in vivo were measured by multiple methods, including density gradient ultracentrifugation, chromatography, mass spectrometry, stimulated Raman scattering (SRS) microscopy, sub-cellular fractionation, immunoprecipitation, immunofluorescence, and electron microscopy. MAIN FINDINGS/RESULTS:1) FITM2-deficient hepatic cells in vitro and in vivo secrete TG-depleted VLDL particles, but the number of particles is unchanged compared to controls; 2) FITM2 deficiency in mice on a high fat diet (HFD) results in decreased plasma TG levels. The number of apoB100-containing lipoproteins remains similar, but shift from VLDL to low density lipoprotein (LDL) density; 3) Both in vitro and in vivo, when TG synthesis is stimulated and FITM2 is deficient, TG accumulates in the ER, and despite its availability this pool is unable to fully lipidate apoB100 particles; 4) FITM2 deficiency disrupts ER morphology and results in ER stress. PRINCIPAL CONCLUSIONS/CONCLUSIONS:The results suggest that FITM2 contributes to VLDL lipidation, especially when newly synthesized hepatic TG is in abundance. In addition to its fundamental importance in VLDL assembly, the results also suggest that under dysmetabolic conditions, FITM2 may be an important factor in the partitioning of TG between cytosolic LDs and VLDL particles.
PMID: 39426520
ISSN: 2212-8778
CID: 5719032

Lipid Disorders and Pregnancy

Schatoff, Daria; Jung, Irene Y; Goldberg, Ira J
Practicing endocrinologists are likely to confront 2 major issues that occur with dyslipidemias during pregnancy. The most dramatic is the development of severe hypertriglyceridemia leading to acute pancreatitis. The second is the approach to treatment of familial hypercholesterolemia, a common genetic disorder. This article reviews the normal physiology and the pathophysiology of lipoproteins that occurs with pregnancy and then discusses the approaches to prevention and/or treatment of dyslipidemia in pregnancy with a focus on lifestyle and acceptable drug therapies.
PMID: 39084821
ISSN: 1558-4410
CID: 5731442

Imbalance of APOB Lipoproteins and Large HDL in Type 1 Diabetes Drives Atherosclerosis

Kothari, Vishal; Ho, Tse W W; Cabodevilla, Ainara G; He, Yi; Kramer, Farah; Shimizu-Albergine, Masami; Kanter, Jenny E; Snell-Bergeon, Janet; Fisher, Edward A; Shao, Baohai; Heinecke, Jay W; Wobbrock, Jacob O; Lee, Warren L; Goldberg, Ira J; Vaisar, Tomas; Bornfeldt, Karin E
BACKGROUND/UNASSIGNED:Individuals with type 1 diabetes (T1D) generally have normal or even higher HDL (high-density lipoprotein)-cholesterol levels than people without diabetes yet are at increased risk for atherosclerotic cardiovascular disease (CVD). Human HDL is a complex mixture of particles that can vary in cholesterol content by >2-fold. To investigate if specific HDL subspecies contribute to the increased atherosclerosis associated with T1D, we created mouse models of T1D that exhibit human-like HDL subspecies. We also measured HDL subspecies and their association with incident CVD in a cohort of people with T1D. METHODS/UNASSIGNED: RESULTS/UNASSIGNED: CONCLUSIONS/UNASSIGNED:Our results suggest that the balance between APOB lipoproteins and the larger HDL subspecies contributes to atherosclerosis progression and incident CVD in the setting of T1D and that larger HDLs exert atheroprotective effects on endothelial cells rather than by promoting macrophage cholesterol efflux.
PMID: 38828596
ISSN: 1524-4571
CID: 5664892

In the Beginning, Lipoproteins Cross the Endothelial Barrier

Goldberg, Ira J; Cabodevilla, Ainara G; Younis, Waqas
Atherosclerosis begins with the infiltration of cholesterol-containing lipoproteins into the arterial wall. White blood cell (WBC)-associated inflammation follows. Despite decades of research using genetic and pharmacologic methods to alter WBC function, in humans, the most effective method to prevent the initiation and progression of disease remains low-density lipoprotein (LDL) reduction. However, additional approaches to reducing cardiovascular disease would be useful as residual risk of events continues even with currently effective LDL-reducing treatments. Some of this residual risk may be due to vascular toxicity of triglyceride-rich lipoproteins (TRLs). Another option is that LDL transcytosis continues, albeit at reduced rates due to lower circulating levels of this lipoprotein. This review will address these two topics. The evidence that TRLs promote atherosclerosis and the processes that allow LDL and TRLs to be taken up by endothelial cells leading to their accumulation with the subendothelial space.
PMCID:11150724
PMID: 38616110
ISSN: 1880-3873
CID: 5664732

Can another lipid, sphingosine-1-phosphate, treat atherosclerosis? [Comment]

Younis, Waqas; Goldberg, Ira J
PMID: 38563326
ISSN: 1755-3245
CID: 5657182

Intracellular lipase and regulation of the lipid droplet

Cabodevilla, Ainara G; Son, Ni; Goldberg, Ira J
PURPOSE OF REVIEW:Lipid droplets are increasingly recognized as distinct intracellular organelles that have functions exclusive to the storage of energetic lipids. Lipid droplets modulate macrophage inflammatory phenotype, control the availability of energy for muscle function, store excess lipid, sequester toxic lipids, modulate mitochondrial activity, and allow transfer of fatty acids between tissues. RECENT FINDINGS:There have been several major advances in our understanding of the formation, dissolution, and function of this organelle during the past two years. These include new information on movement and partition of amphipathic proteins between the cytosol and lipid droplet surface, molecular determinants of lipid droplet formation, and pathways leading to lipid droplet hydrophobic lipid formation. Rapid advances in mitochondrial biology have also begun to define differences in their function and partnering with lipid droplets to modulate lipid storage versus oxidation. SUMMARY:This relationship of lipid droplets biology and cellular function provides new understanding of an important cellular organelle that influences muscle function, adipose lipid storage, and diseases of lipotoxicity.
PMCID:10919935
PMID: 38447014
ISSN: 1473-6535
CID: 5669802