Try a new search

Format these results:

Searched for:

in-biosketch:true

person:od4

Total Results:

1066


A left-lateralized dorsolateral prefrontal network for naming

Yu, Leyao; Dugan, Patricia; Doyle, Werner; Devinsky, Orrin; Friedman, Daniel; Flinker, Adeen
The ability to connect the form and meaning of a concept, known as word retrieval, is fundamental to human communication. While various input modalities could lead to identical word retrieval, the exact neural dynamics supporting this convergence relevant to daily auditory discourse remain poorly understood. Here, we leveraged neurosurgical electrocorticographic (ECoG) recordings from 48 patients and dissociated two key language networks that highly overlap in time and space integral to word retrieval. Using unsupervised temporal clustering techniques, we found a semantic processing network located in the middle and inferior frontal gyri. This network was distinct from an articulatory planning network in the inferior frontal and precentral gyri, which was agnostic to input modalities. Functionally, we confirmed that the semantic processing network encodes word surprisal during sentence perception. Our findings characterize how humans integrate ongoing auditory semantic information over time, a critical linguistic function from passive comprehension to daily discourse.
PMCID:11118423
PMID: 38798614
ISSN: 2692-8205
CID: 5676322

Dravet syndrome: From neurodevelopmental to neurodegenerative disease?

Selvarajah, Arunan; Sabo, Andrea; Gorodetsky, Carolina; Marques, Paula T; Chandran, Ilakkiah; Thompson, Miles; Zulfiqar Ali, Quratulain; McAndrews, Mary Pat; Tartaglia, Maria Carmela; Lira, Victor S T; Huh, Linda; Connolly, Mary; Rezazadeh, Arezoo; Qaiser, Farah; Fantaneanu, Tadeu A; Duong, Monica; Barboza, Karen; Lomax, Lysa Boissé; Inuzuka Nakaharada, Luciana; Valente, Kette; Arbinuch, Jack; Espindola, Mariana; Garzon, Eliana; Sorrento, Gianluca; Meskis, Mary Anne; Villas, Nicole; Hood, Veronica; Gonzalez, Marta; Cardenal-Muñoz, Elena; Aiba, Jose Angel; McKenna, Lauraine; Linehan, Christine; Hohn, Sophine; Auvin, Stéphane; Devinsky, Orrin; Yuen, Ryan; Berg, Anne T; Taati, Babak; Fasano, Alfonso; Andrade, Danielle M
OBJECTIVE:Dravet syndrome (DS) is a severe developmental and epileptic encephalopathy caused by SCN1A haploinsufficiency in the majority of cases. Caregivers of adults with DS often complain about the loss of previously acquired skills. We set out to explore these perceptions and determine whether abnormalities reported were detectable in validated tests. We also investigated possible correlations between symptoms, age, and exposure to sodium channel blockers (SCBs). METHODS:This cross-sectional, multicenter study used the Vineland Adaptive Behavior Scales, 3rd edition (raw scores) for behavior analyses and Moss-Psychiatric Assessment Schedules checklist to screen for psychiatric symptoms. The Social Communication Questionnaire screened for social communication deficits. Parkinsonian features were evaluated with the modified Unified Parkinson's Disease Rating Scale. For gait evaluation, we validated the use of home videos, using instrumental gait analysis in a subgroup of patients, and then used the home videos for the remainder. RESULTS:A total of 92 patients were enrolled (age range = 18-51 years, mean = 27.93 ± 8.59 years). Sixty percent of caregivers observed a decline in previously acquired skills, including intelligence, speech, interaction with others, ability to climb stairs and walk without support, and hand coordination. Adaptive skills, parkinsonian symptoms, and gait were worse in older patients and those exposed to SCBs for longer periods of time. Fourteen percent of patients screened positive for affective disorders, 11.6% for dementia, and 10.5% for a psychotic disorder. Fifty-three percent screened positive for social communication deficits. SIGNIFICANCE/CONCLUSIONS:This is the largest group of adults with DS to be systematically evaluated. They had severe nonseizure symptoms. Older age and longer use of SCBs were associated with worse adaptive skills, gait, and parkinsonism. Some older adults screened positive for depression and dementia. Caregivers identified functional decline in activities of daily living (ADLs). Taken together, the risk of dementia, parkinsonian gait, and decline in ability to perform previously mastered ADLs support that some adults with DS may be developing a neurodegenerative disorder.
PMID: 40034086
ISSN: 1528-1167
CID: 5842702

Transformer-based neural speech decoding from surface and depth electrode signals

Chen, Junbo; Chen, Xupeng; Wang, Ran; Le, Chenqian; Khalilian-Gourtani, Amirhossein; Jensen, Erika; Dugan, Patricia; Doyle, Werner; Devinsky, Orrin; Friedman, Daniel; Flinker, Adeen; Wang, Yao
PMID: 39819752
ISSN: 1741-2552
CID: 5777232

From Single Words to Sentence Production: Shared Cortical Representations but Distinct Temporal Dynamics

Morgan, Adam M; Devinsky, Orrin; Doyle, Werner K; Dugan, Patricia; Friedman, Daniel; Flinker, Adeen
Sentence production is the uniquely human ability to transform complex thoughts into strings of words. Despite the importance of this process, language production research has primarily focused on single words. It remains an untested assumption that insights from this literature generalize to more naturalistic utterances like sentences. Here, we investigate this using high-resolution neurosurgical recordings (ECoG) and an overt production experiment where patients produce six words in isolation (picture naming) and in sentences (scene description). We trained machine learning models to identify the unique brain activity pattern for each word during picture naming, and used these patterns to decode which words patients were processing while they produced sentences. Our findings reveal that words share cortical representations across tasks. In sensorimotor cortex, words were consistently activated in the order in which they were said in the sentence. However, in inferior and middle frontal gyri (IFG and MFG), the order in which words were processed depended on the syntactic structure of the sentence. This dynamic interplay between sentence structure and word processing reveals that sentence production is not simply a sequence of single word production tasks, and highlights a regional division of labor within the language network. Finally, we argue that the dynamics of word processing in prefrontal cortex may impose a subtle pressure on language evolution, explaining why nearly all the world's languages position subjects before objects.
PMCID:11565881
PMID: 39554006
ISSN: 2692-8205
CID: 5766162

A low-activity cortical network selectively encodes syntax

Morgan, Adam M; Devinsky, Orrin; Doyle, Werner K; Dugan, Patricia; Friedman, Daniel; Flinker, Adeen
Syntax, the abstract structure of language, is a hallmark of human cognition. Despite its importance, its neural underpinnings remain obscured by inherent limitations of non-invasive brain measures and a near total focus on comprehension paradigms. Here, we address these limitations with high-resolution neurosurgical recordings (electrocorticography) and a controlled sentence production experiment. We uncover three syntactic networks that are broadly distributed across traditional language regions, but with focal concentrations in middle and inferior frontal gyri. In contrast to previous findings from comprehension studies, these networks process syntax mostly to the exclusion of words and meaning, supporting a cognitive architecture with a distinct syntactic system. Most strikingly, our data reveal an unexpected property of syntax: it is encoded independent of neural activity levels. We propose that this "low-activity coding" scheme represents a novel mechanism for encoding information, reserved for higher-order cognition more broadly.
PMCID:11212956
PMID: 38948730
ISSN: 2692-8205
CID: 5676332

Comparison of the amyloid plaque proteome in Down syndrome, early-onset Alzheimer's disease, and late-onset Alzheimer's disease

Martá-Ariza, Mitchell; Leitner, Dominique F; Kanshin, Evgeny; Suazo, Jianina; Giusti Pedrosa, Ana; Thierry, Manon; Lee, Edward B; Devinsky, Orrin; Drummond, Eleanor; Fortea, Juan; Lleó, Alberto; Ueberheide, Beatrix; Wisniewski, Thomas
Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.99 y/o), EOAD (63 ± 4.07 y/o), LOAD (82.1 ± 6.37 y/o), and controls (66.4 ± 13.04). We identified differentially abundant proteins when comparing Aβ plaques and neighboring non-plaque tissue (FDR < 5%, fold-change > 1.5) in DS (n = 132), EOAD (n = 192), and LOAD (n = 128), with 43 plaque-associated proteins shared across all groups. Positive correlations were observed between plaque-associated proteins in DS and EOAD (R2 = .77), DS and LOAD (R2 = .73), and EOAD and LOAD (R2 = .67). Top gene ontology biological processes (GOBP) included lysosomal transport (p = 1.29 × 10-5) for DS, immune system regulation (p = 4.33 × 10-5) for EOAD, and lysosome organization (p = 0.029) for LOAD. Protein networks revealed a plaque-associated protein signature involving APP metabolism, immune response, and lysosomal functions. In DS, EOAD, and LOAD non-plaque vs. control tissue, we identified 263, 269, and 301 differentially abundant proteins, with 65 altered proteins shared across all cohorts. Non-plaque proteins in DS showed modest correlations with EOAD (R2 = .59) and LOAD (R2 = .33) compared to the correlation between EOAD and LOAD (R2 = .79). Top GOBP term for all groups was chromatin remodeling (p < 0.001), with additional terms for DS including extracellular matrix, and protein-DNA complexes and gene expression regulation for EOAD and LOAD. Our study reveals key functional characteristics of the amyloid plaque proteome in DS, compared to EOAD and LOAD, highlighting shared pathways in endo/lysosomal functions and immune responses. The non-plaque proteome revealed distinct alterations in ECM and chromatin structure, underscoring unique differences between DS and AD subtypes. Our findings enhance our understanding of AD pathogenesis and identify potential biomarkers and therapeutic targets.
PMID: 39825890
ISSN: 1432-0533
CID: 5777842

Association of cognitive and structural correlates of brain aging and incident epilepsy. The Framingham Heart Study

Stefanidou, Maria; Himali, Jayandra J; Bernal, Rebecca; Satizabal, Claudia; Devinsky, Orrin; Romero, Jose R; Beiser, Alexa S; Seshadri, Sudha; Friedman, Daniel
OBJECTIVES/OBJECTIVE:Late-onset epilepsy has the highest incidence among all age groups affected by epilepsy and often occurs in the absence of known clinical risk factors such as stroke and dementia. There is increasing evidence that brain changes contributing to epileptogenesis likely start years before disease onset, and we aim to relate cognitive and imaging correlates of subclinical brain injury to incident late-onset epilepsy in a large, community-based cohort. METHODS:We studied Offspring Cohort of the Framingham Heart Study participants 45 years or older, who were free of prevalent stroke, dementia, or epilepsy, and had neuropsychological (NP) evaluation and brain magnetic resonance imaging (MRI). Cognitive measures included Visual Reproduction Delayed Recall, Logical Memory Delayed Recall, Similarities, Trail Making Test B minus A (TrTB-TrTA; attention and executive function), and a global measure of cognition derived from principal component analysis. MRI measures included total cerebral brain volume, cortical gray matter volume (CGMV), white matter hyperintensity volume (WMHV), and hippocampal volume. Incident epilepsy was identified through a review of administrative data and medical records. Cox proportional hazards regression models were used for the analyses. All analyses were adjusted for age, sex, and educational level (cognition only). RESULTS:Among participants who underwent NP testing (n = 2349, 45.81% male), 31 incident epilepsy cases were identified during follow-up. Better performance on the TrTB-TrTA was associated with a lower risk of developing epilepsy (hazard ratio [HR] .25, 95% confidence interval [CI] .08-.73; p = .011). In the subgroup of participants with MRI (n = 2056, 46.01% male), 27 developed epilepsy. Higher WMHV was associated with higher epilepsy risk (HR 1.5, 95%CI 1.01-2.20; p = .042), but higher CGMV (HR .73, 95% CI .57-.93; p = .001) was associated with lower incidence of epilepsy. SIGNIFICANCE/CONCLUSIONS:Better performance on the (TrTB-TrTA), a measure of executive function and attention, and higher cortical volumes are associated with lower risk of developing epilepsy. Conversely, higher WMHV, a measure of occult vascular injury, increases the risk. Our study shows that non-invasive tests performed in mid-life may help identify people at risk for developing epilepsy later in life.
PMID: 39555677
ISSN: 1528-1167
CID: 5758112

A corollary discharge circuit in human speech

Khalilian-Gourtani, Amirhossein; Wang, Ran; Chen, Xupeng; Yu, Leyao; Dugan, Patricia; Friedman, Daniel; Doyle, Werner; Devinsky, Orrin; Wang, Yao; Flinker, Adeen
When we vocalize, our brain distinguishes self-generated sounds from external ones. A corollary discharge signal supports this function in animals; however, in humans, its exact origin and temporal dynamics remain unknown. We report electrocorticographic recordings in neurosurgical patients and a connectivity analysis framework based on Granger causality that reveals major neural communications. We find a reproducible source for corollary discharge across multiple speech production paradigms localized to the ventral speech motor cortex before speech articulation. The uncovered discharge predicts the degree of auditory cortex suppression during speech, its well-documented consequence. These results reveal the human corollary discharge source and timing with far-reaching implication for speech motor-control as well as auditory hallucinations in human psychosis.
PMCID:11648673
PMID: 39625978
ISSN: 1091-6490
CID: 5780132

Adult Phenotype of CHD2-Associated Disorders

Rong, Marlene; Zulfiqar Ali, Quratulain; Aledo-Serrano, Angel; Bayat, Allan; Devinsky, Orrin; Qaiser, Farah; Chandran, Ilakkiah; Ali, Anum; Fasano, Alfonso; Bassett, Anne S; Andrade, Danielle M
BACKGROUND AND OBJECTIVES/UNASSIGNED:variants. METHODS/UNASSIGNED:variants were included. We used standardized tools to evaluate current seizures, medication use, sleep, gastrointestinal symptoms, pain response, gait, social communication disorder, and adaptive behavioral skills of patients. RESULTS/UNASSIGNED:= 0.04). DISCUSSION/UNASSIGNED:variants.
PMCID:11595326
PMID: 39601014
ISSN: 2376-7839
CID: 5803982

Raphe and ventrolateral medulla proteomics in sudden unexplained death in childhood with febrile seizure history

Leitner, Dominique F; William, Christopher; Faustin, Arline; Kanshin, Evgeny; Snuderl, Matija; McGuone, Declan; Wisniewski, Thomas; Ueberheide, Beatrix; Gould, Laura; Devinsky, Orrin
Sudden unexplained death in childhood (SUDC) is death of a child ≥ 12 months old that is unexplained after autopsy and detailed analyses. Among SUDC cases, ~ 30% have febrile seizure (FS) history, versus 2-5% in the general population. SUDC cases share features with sudden unexpected death in epilepsy (SUDEP) and sudden infant death syndrome (SIDS), in which brainstem autonomic dysfunction is implicated. To understand whether brainstem protein changes are associated with FS history in SUDC, we performed label-free quantitative mass spectrometry on microdissected midbrain dorsal raphe, medullary raphe, and the ventrolateral medulla (n = 8 SUDC-noFS, n = 11 SUDC-FS). Differential expression analysis between SUDC-FS and SUDC-noFS at p < 0.05 identified 178 altered proteins in dorsal raphe, 344 in medullary raphe, and 100 in the ventrolateral medulla. These proteins were most significantly associated with increased eukaryotic translation initiation (p = 3.09 × 10-7, z = 1.00), eukaryotic translation elongation (p = 6.31 × 10-49, z = 6.01), and coagulation system (p = 1.32 × 10-5, z = 1.00). The medullary raphe had the strongest enrichment for altered signaling pathways, including with comparisons to three other brain regions previously analyzed (frontal cortex, hippocampal dentate gyrus, cornu ammonus). Immunofluorescent tissue analysis of serotonin receptors identified 2.1-fold increased 5HT2A in the medullary raphe of SUDC-FS (p = 0.025). Weighted gene correlation network analysis (WGCNA) of case history indicated that longer FS history duration significantly correlated with protein levels in the medullary raphe and ventrolateral medulla; the most significant gene ontology biological processes were decreased cellular respiration (p = 9.8 × 10-5, corr = - 0.80) in medullary raphe and decreased synaptic vesicle cycle (p = 1.60 × 10-7, corr = - 0.90) in the ventrolateral medulla. Overall, FS in SUDC was associated with more protein differences in the medullary raphe and was related with increased translation-related signaling pathways. Future studies should assess whether these changes result from FS or may in some way predispose to FS or SUDC.
PMCID:11604820
PMID: 39607506
ISSN: 1432-0533
CID: 5763572