Searched for: in-biosketch:true
person:friedd06
Coarse behavioral context decoding
Alasfour, Abdulwahab; Gabriel, Paolo; Jiang, Xi; Shamie, Isaac; Melloni, Lucia; Thesen, Thomas; Dugan, Patricia; Friedman, Daniel; Doyle, Werner; Devinsky, Orin; Gonda, David; Sattar, Shifteh; Wang, Sonya; Halgren, Eric; Gilja, Vikash
OBJECTIVE:Current brain-computer interface (BCI) studies demonstrate the potential to decode neural signals obtained from structured and trial-based tasks to drive actuators with high performance within the context of these tasks. Ideally, to maximize utility, such systems will be applied to a wide range of behavioral settings or contexts. Thus, we explore the potential to augment such systems with the ability to decode abstract behavioral contextual states from neural activity. APPROACH/METHODS:To demonstrate the feasibility of such context decoding, we used electrocorticography (ECoG) and stereo-electroencephalography (sEEG) data recorded from the cortical surface and deeper brain structures, respectively, continuously across multiple days from three subjects. During this time, the subjects were engaged in a range of naturalistic behaviors in a hospital environment. Behavioral contexts were labeled manually from video and audio recordings; four states were considered: engaging in dialogue, rest, using electronics, and watching television. We decode these behaviors using a factor analysis and support vector machine (SVM) approach. MAIN RESULTS/RESULTS:We demonstrate that these general behaviors can be decoded with high accuracies of 73% for a four-class classifier for one subject and 71% and 62% for a three-class classifier for two subjects. SIGNIFICANCE/CONCLUSIONS:To our knowledge, this is the first demonstration of the potential to disambiguate abstract naturalistic behavioral contexts from neural activity recorded throughout the day from implanted electrodes. This work motivates further study of context decoding for BCI applications using continuously recorded naturalistic activity in the clinical setting.
PMID: 30523860
ISSN: 1741-2552
CID: 3642332
Hippocampal gamma predicts associative memory performance as measured by acute and chronic intracranial EEG
Henin, Simon; Shankar, Anita; Hasulak, Nicholas; Friedman, Daniel; Dugan, Patricia; Melloni, Lucia; Flinker, Adeen; Sarac, Cansu; Fang, May; Doyle, Werner; Tcheng, Thomas; Devinsky, Orrin; Davachi, Lila; Liu, Anli
Direct recordings from the human brain have historically involved epilepsy patients undergoing invasive electroencephalography (iEEG) for surgery. However, these measurements are temporally limited and affected by clinical variables. The RNS System (NeuroPace, Inc.) is a chronic, closed-loop electrographic seizure detection and stimulation system. When adapted by investigators for research, it facilitates cognitive testing in a controlled ambulatory setting, with measurements collected over months to years. We utilized an associative learning paradigm in 5 patients with traditional iEEG and 3 patients with chronic iEEG, and found increased hippocampal gamma (60-100 Hz) sustained at 1.3-1.5 seconds during encoding in successful versus failed trials in surgical patients, with similar results in our RNS System patients (1.4-1.6 seconds). Our findings replicate other studies demonstrating that sustained hippocampal gamma supports encoding. Importantly, we have validated the RNS System to make sensitive measurements of hippocampal dynamics during cognitive tasks in a chronic ambulatory research setting.
PMID: 30679734
ISSN: 2045-2322
CID: 3610122
Postconvulsive central apnea as a biomarker for sudden unexpected death in epilepsy (SUDEP)
Vilella, Laura; Lacuey, Nuria; Hampson, Johnson P; Rani, M R Sandhya; Sainju, Rup K; Friedman, Daniel; Nei, Maromi; Strohl, Kingman; Scott, Catherine; Gehlbach, Brian K; Zonjy, Bilal; Hupp, Norma J; Zaremba, Anita; Shafiabadi, Nassim; Zhao, Xiuhe; Reick-Mitrisin, Victoria; Schuele, Stephan; Ogren, Jennifer; Harper, Ronald M; Diehl, Beate; Bateman, Lisa; Devinsky, Orrin; Richerson, George B; Ryvlin, Philippe; Lhatoo, Samden D
OBJECTIVE:To characterize peri-ictal apnea and postictal asystole in generalized convulsive seizures (GCS) of intractable epilepsy. METHODS:This was a prospective, multicenter epilepsy monitoring study of autonomic and breathing biomarkers of sudden unexpected death in epilepsy (SUDEP) in patients ≥18 years old with intractable epilepsy and monitored GCS. Video-EEG, thoracoabdominal excursions, nasal airflow, capillary oxygen saturation, and ECG were analyzed. RESULTS:= 0.009). CONCLUSIONS:PCCA occurred in both focal and generalized epilepsies, suggesting a different pathophysiology from ICA, which occurred only in focal epilepsy. PCCA was seen in 2 near-SUDEP cases and 1 probable SUDEP case, suggesting that this phenomenon may serve as a clinical biomarker of SUDEP. Larger studies are needed to validate this observation. Rhythmic postictal muscle artifact is suggestive of post-GCS breathing effort rather than a specific biomarker of laryngospasm.
PMID: 30568003
ISSN: 1526-632x
CID: 3557072
Closed-loop acoustic stimulation enhances sleep oscillations but not memory performance
Henin, Simon; Borges, Helen; Shankar, Anita; Sarac, Cansu; Melloni, Lucia; Friedman, Daniel; Flinker, Adeen; Parra, Lucas C; Buzsaki, Gyorgy; Devinsky, Orrin; Liu, Anli
Slow-oscillations and spindle activity during non-REM sleep have been implicated in memory consolidation. Closed-loop acoustic stimulation has previously been shown to enhance slow oscillations and spindle activity during sleep and improve verbal associative memory. We assessed the effect of closed-loop acoustic stimulation during a daytime nap on a virtual reality spatial navigation task in 12 healthy human subjects in a randomized within-subject crossover design. We show robust enhancement of slow-spindle activity during sleep. However, no effects on behavioral performance were observed when comparing real versus sham stimulation. To explore whether memory enhancement effects were task-specific and dependent on nocturnal sleep, in a second experiment with 19 healthy subjects, we aimed to replicate a previous study which used closed-loop acoustic stimulation to enhance memory for word pairs. Methods were as close as possible to the original study, except we used a double-blind protocol, in which both subject and experimenter were unaware of the test condition. Again, we successfully enhanced slow-spindle power, but again did not strengthen associative memory performance with stimulation. We conclude that enhancement of slow-spindle oscillations may be insufficient to enhance memory performance in spatial navigation or verbal association tasks, and provide possible explanations for lack of behavioral replication.SIGNIFICANCE STATEMENT Prior studies have demonstrated that a closed-loop acoustic pulse paradigm during sleep can enhance verbal memory performance. This technique has widespread scientific and clinical appeal due to its non-invasive nature and ease of application. We tested with a rigorous double-blind design whether this technique could enhance key sleep rhythms associated sleep-dependent memory performance. We discovered that we could reliably enhance slow and spindle rhythms, but did not improve memory performance in the stimulation condition compared to sham condition. Our findings suggest that enhancing slow-spindle rhythms is insufficient to enhance sleep-dependent learning.
PMID: 31604814
ISSN: 2373-2822
CID: 4130772
Incidence, Recurrence, and Risk Factors for Peri-ictal Central Apnea and Sudden Unexpected Death in Epilepsy
Vilella, Laura; Lacuey, Nuria; Hampson, Johnson P; Rani, M R Sandhya; Loparo, Kenneth; Sainju, Rup K; Friedman, Daniel; Nei, Maromi; Strohl, Kingman; Allen, Luke; Scott, Catherine; Gehlbach, Brian K; Zonjy, Bilal; Hupp, Norma J; Zaremba, Anita; Shafiabadi, Nassim; Zhao, Xiuhe; Reick-Mitrisin, Victoria; Schuele, Stephan; Ogren, Jennifer; Harper, Ronald M; Diehl, Beate; Bateman, Lisa M; Devinsky, Orrin; Richerson, George B; Tanner, Adriana; Tatsuoka, Curtis; Lhatoo, Samden D
Introduction: Peri-ictal breathing dysfunction was proposed as a potential mechanism for SUDEP. We examined the incidence and risk factors for both ictal (ICA) and post-convulsive central apnea (PCCA) and their relationship with potential seizure severity biomarkers (i. e., post-ictal generalized EEG suppression (PGES) and recurrence. Methods: Prospective, multi-center seizure monitoring study of autonomic, and breathing biomarkers of SUDEP in adults with intractable epilepsy and monitored seizures. Video EEG, thoraco-abdominal excursions, capillary oxygen saturation, and electrocardiography were analyzed. A subgroup analysis determined the incidences of recurrent ICA and PCCA in patients with ≥2 recorded seizures. We excluded status epilepticus and obscured/unavailable video. Central apnea (absence of thoracic-abdominal breathing movements) was defined as ≥1 missed breath, and ≥5 s. ICA referred to apnea preceding or occurring along with non-convulsive seizures (NCS) or apnea before generalized convulsive seizures (GCS). Results: We analyzed 558 seizures in 218 patients (130 female); 321 seizures were NCS and 237 were GCS. ICA occurred in 180/487 (36.9%) seizures in 83/192 (43.2%) patients, all with focal epilepsy. Sleep state was related to presence of ICA [RR 1.33, CI 95% (1.08-1.64), p = 0.008] whereas extratemporal epilepsy was related to lower incidence of ICA [RR 0.58, CI 95% (0.37-0.90), p = 0.015]. ICA recurred in 45/60 (75%) patients. PCCA occurred in 41/228 (18%) of GCS in 30/134 (22.4%) patients, regardless of epilepsy type. Female sex [RR 11.30, CI 95% (4.50-28.34), p < 0.001] and ICA duration [RR 1.14 CI 95% (1.05-1.25), p = 0.001] were related to PCCA presence, whereas absence of PGES was related to absence of PCCA [0.27, CI 95% (0.16-0.47), p < 0.001]. PCCA duration was longer in males [HR 1.84, CI 95% (1.06-3.19), p = 0.003]. In 9/17 (52.9%) patients, PCCA was recurrent. Conclusion: ICA incidence is almost twice the incidence of PCCA and is only seen in focal epilepsies, as opposed to PCCA, suggesting different pathophysiologies. ICA is likely to be a recurrent semiological phenomenon of cortical seizure discharge, whereas PCCA may be a reflection of brainstem dysfunction after GCS. Prolonged ICA or PCCA may, respectively, contribute to SUDEP, as evidenced by two cases we report. Further prospective cohort studies are needed to validate these hypotheses.
PMCID:6413671
PMID: 30890997
ISSN: 1664-2295
CID: 3734522
Brainstem network disruption: A pathway to sudden unexplained death in epilepsy?
Mueller, Susanne G; Nei, Maromi; Bateman, Lisa M; Knowlton, Robert; Laxer, Kenneth D; Friedman, Daniel; Devinsky, Orrin; Goldman, Alica M
Observations in witnessed Sudden Unexpected Death in Epilepsy (SUDEP) suggest that a fatal breakdown of the central autonomic control could play a major role in SUDEP. A previous MR study found volume losses in the mesencephalon in focal epilepsy that were more severe and extended into the lower brainstem in two patients who later died of SUDEP. The aims of this study were to demonstrate an association (1) between brainstem volume loss and impaired autonomic control (reduced heart rate variability [HRV]); (2) between brainstem damage and time to SUDEP in patients who later died of SUDEP. Two populations were studied: (1) Autonomic system function population (ASF, 18 patients with focal epilepsy, 11 controls) with HRV measurements and standardized 3 T MR exams. (2) SUDEP population (26 SUDEP epilepsy patients) with clinical MRI 1-10 years before SUDEP. Deformation-based morphometry of the brainstem was used to generate profile similarity maps from the resulting Jacobian determinant maps that were further characterized by graph analysis to identify regions with excessive expansion indicating significant volume loss or atrophy. The total number of regions with excessive expansion in ASF was negatively correlated with HRV (r = -.37, p = .03), excessive volume loss in periaqueductal gray/medulla oblongata autonomic nuclei explained most of the HRV associated variation (r/r2  = -.82/.67, p < .001). The total number of regions with excessive expansion in SUDEP was negatively correlated with time to SUDEP (r = -.39, p = .03), excessive volume loss in the raphe/medulla oblongata at the obex level explained most of the variation of the time between MRI to SUDEP (r/r2  = -.60/.35,p = .001). Epilepsy is associated with brainstem atrophy that impairs autonomic control and can increase the risk for SUDEP if it expands into the mesencephalon.
PMID: 30096213
ISSN: 1097-0193
CID: 3236502
Invasive monitoring after resection of epileptogenic neocortical lesions in multistaged epilepsy surgery in children
Hidalgo, Eveline Teresa; Frankel, Hyman Gregory; Rodriguez, Crystalann; Orillac, Cordelia; Phillips, Sophie; Patel, Neel; Devinsky, Orrin; Friedman, Daniel; Weiner, Howard L
OBJECTIVE:Incomplete resection of neocortical epileptogenic foci correlates with failed epilepsy surgery in children. We often treat patients with neocortical epilepsy with a staged approach using invasive monitoring to localize the focus, resect the seizure onset zone, and, in select cases, post-resection invasive monitoring (PRM). We report the technique and the outcomes of children treated with staged surgery including PRM. METHODS:We retrospectively reviewed the charts of pediatric patients with neocortical epilepsy who underwent resective surgery with PRM. RESULTS:We identified 71 patients, 5 patients with MRI-negative epilepsy and 66 patients with MRI-identified neocortical lesions; 64/66 (97%) patients had complete lesionectomy. In 61/71 (86%) patients PRM was associated with positive outcomes. Those findings were: 1) clinical seizures with electrographic involvement at resection margins (47%); 2) subclinical seizures and interictal discharges at resection margins (29%); and 3) clinical and subclinical seizures revealing a new epileptogenic focus (20%). In 55/71 (77%) patients, PRM data led to additional resection (re-resection; RR). Six additional patients had no further resection due to overlap with eloquent cortex. Histopathology showed tuberous sclerosis complex (TSC; n = 46), focal cortical dysplasia (FCD; n = 16)), gliosis (n = 4), tumors (n = 4), and Sturge-Weber syndrome (n = 1). There were no major complications. Seizure-free outcome in children with TSC was 63% at 1-year follow-up and 56% at 2-year follow-up. In FCD, seizure freedom after 1 and 2 years was 85%. SIGNIFICANCE/CONCLUSIONS:Post-resection monitoring may provide additional information about the extent of the epileptogenic zone, such as residual epileptogenic activity at the margins of the resection cavity, and may unmask additional seizure foci. This method may be especially useful in achieving long-term stable seizure-free outcome.
PMID: 30384114
ISSN: 1872-6844
CID: 3400002
Running-down phenomenon captured with chronic electrocorticography
Geller, Aaron S; Friedman, Daniel; Fang, May; Doyle, Werner K; Devinsky, Orrin; Dugan, Patricia
The running-down phenomenon refers to 2 analogous but distinct entities that may be seen after epilepsy surgery. The first is clinical, and denotes a progressive diminution in seizures after epilepsy surgery in which the epileptogenic zone could not be completely removed (Modern Problems of Psychopharmacology 1970;4:306, Brain 1996:989). The second is electrographic, and refers to a progressive deactivation of a secondary seizure focus after removal of the primary epileptogenic zone. This progressive decrease in epileptiform activity may represent a reversal of secondary epileptogenesis, where a primary epileptogenic zone is postulated to activate epileptiform discharges at a second site and may become independent.3 The electrographic running-down phenomenon has been reported in only limited numbers of patients, using serial postoperative routine scalp electroencephalography (EEG) (Arch Neurol 1985;42:318). We present what is, to our knowledge, the most detailed demonstration of the electrographic running-down phenomenon in humans, made possible by chronic electrocorticography (ECoG). Our patient's left temporal seizure focus overlapped with language areas, limiting the resection to a portion of the epileptogenic zone, followed by implantation of a direct brain-responsive neurostimulator (RNS System, NeuroPace Inc.) to treat residual epileptogenic tissue. Despite the limited extent of the resection, the patient remains seizure-free more than 2Â years after surgery, with the RNS System recording ECoG without delivering stimulation. We reviewed the chronic recordings with automated spike detection and inspection of electrographic episodes marked by the neurostimulator. These recordings demonstrate progressive diminution in spiking and rhythmic discharges, consistent with an electrographic running-down phenomenon.
PMCID:6276771
PMID: 30525122
ISSN: 2470-9239
CID: 3556242
A companion to the preclinical common data elements for physiologic data in rodent epilepsy models. A report of the TASK3 Physiology Working Group of the ILAE/AES Joint Translational Task Force
Gorter, Jan A; van Vliet, Erwin A; Dedeurwaerdere, Stefanie; Buchanan, Gordon F; Friedman, Daniel; Borges, Karin; Grabenstatter, Heidi; Lukasiuk, Katarzyna; Scharfman, Helen E; Nehlig, Astrid
The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force created the TASK3 working groups to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve standardization of experimental designs. This article concerns the parameters that can be measured to assess the physiologic condition of the animals that are used to study rodent models of epilepsy. Here we discuss CDEs for physiologic parameters measured in adult rats and mice such as general health status, temperature, cardiac and respiratory function, and blood constituents. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript we discuss the monitoring of different aspects of physiology of the animals. The CDEs, CRFs, and companion paper are available to all researchers, and their use will benefit the harmonization and comparability of translational preclinical epilepsy research. The ultimate hope is to facilitate the development of biomarkers and new treatments for epilepsy.
PMID: 30411072
ISSN: 2470-9239
CID: 3429282
A cross-species approach to disorders affecting brain and behaviour
Devinsky, Orrin; Boesch, Jordyn M; Cerda-Gonzalez, Sofia; Coffey, Barbara; Davis, Kathryn; Friedman, Daniel; Hainline, Brian; Houpt, Katherine; Lieberman, Daniel; Perry, Pamela; Prüss, Harald; Samuels, Martin A; Small, Gary W; Volk, Holger; Summerfield, Artur; Vite, Charles; Wisniewski, Thomas; Natterson-Horowitz, Barbara
Structural and functional elements of biological systems are highly conserved across vertebrates. Many neurological and psychiatric conditions affect both humans and animals. A cross-species approach to the study of brain and behaviour can advance our understanding of human disorders via the identification of unrecognized natural models of spontaneous disorders, thus revealing novel factors that increase vulnerability or resilience, and via the assessment of potential therapies. Moreover, diagnostic and therapeutic advances in human neurology and psychiatry can often be adapted for veterinary patients. However, clinical and research collaborations between physicians and veterinarians remain limited, leaving this wealth of comparative information largely untapped. Here, we review pain, cognitive decline syndromes, epilepsy, anxiety and compulsions, autoimmune and infectious encephalitides and mismatch disorders across a range of animal species, looking for novel insights with translational potential. This comparative perspective can help generate novel hypotheses, expand and improve clinical trials and identify natural animal models of disease resistance and vulnerability.
PMID: 30287906
ISSN: 1759-4766
CID: 3320482