Try a new search

Format these results:

Searched for:

in-biosketch:true

person:od4

Total Results:

1060


Observational study of medical marijuana as a treatment for treatment-resistant epilepsies

Devinsky, Orrin; Marmanillo, Angelica; Hamlin, Theresa; Wilken, Philip; Ryan, Daniel; Anderson, Conor; Friedman, Daniel; Todd, George
OBJECTIVES/OBJECTIVE:Medical cannabis formulations with cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) are widely used to treat epilepsy. We studied the safety and efficacy of two formulations. METHODS:We prospectively observed 29 subjects (12 to 46 years old) with treatment-resistant epilepsies (11 Lennox-Gastaut syndrome; 15 with focal or multifocal epilepsy; three generalized epilepsy) were treated with medical cannabis (1THC:20CBD and/or 1THC:50CBD; maximum of 6 mg THC/day) for ≥24 weeks. The primary outcome was change in convulsive seizure frequency from the pre-treatment baseline to the stable optimal dose phase. RESULTS:There were no significant differences during treatment on stable maximal doses for convulsive seizure frequency, seizure duration, postictal duration, or use of rescue medications compared to baseline. No benefits were seen for behavioral disorders or sleep duration; there was a trend for more frequent bowel movements compared to baseline. Ten adverse events occurred in 6/29 patients, all were transient and most unrelated to study medication. No serious adverse events were related to study medication. INTERPRETATION/CONCLUSIONS:Our prospective observational study of two high-CBD/low-THC formulations found no evidence of efficacy in reducing seizures, seizure duration, postictal duration, or rescue medication use. Behavioral disorders or sleep duration was unchanged. Study medication was generally well tolerated. The doses of CBD used were lower than prior studies. Randomized trials with larger cohorts are needed, but we found no evidence of efficacy for two CBD:THC products in treating epilepsy, sleep, or behavior in our population.
PMID: 35267245
ISSN: 2328-9503
CID: 5182322

Shared computational principles for language processing in humans and deep language models

Goldstein, Ariel; Zada, Zaid; Buchnik, Eliav; Schain, Mariano; Price, Amy; Aubrey, Bobbi; Nastase, Samuel A; Feder, Amir; Emanuel, Dotan; Cohen, Alon; Jansen, Aren; Gazula, Harshvardhan; Choe, Gina; Rao, Aditi; Kim, Catherine; Casto, Colton; Fanda, Lora; Doyle, Werner; Friedman, Daniel; Dugan, Patricia; Melloni, Lucia; Reichart, Roi; Devore, Sasha; Flinker, Adeen; Hasenfratz, Liat; Levy, Omer; Hassidim, Avinatan; Brenner, Michael; Matias, Yossi; Norman, Kenneth A; Devinsky, Orrin; Hasson, Uri
Departing from traditional linguistic models, advances in deep learning have resulted in a new type of predictive (autoregressive) deep language models (DLMs). Using a self-supervised next-word prediction task, these models generate appropriate linguistic responses in a given context. In the current study, nine participants listened to a 30-min podcast while their brain responses were recorded using electrocorticography (ECoG). We provide empirical evidence that the human brain and autoregressive DLMs share three fundamental computational principles as they process the same natural narrative: (1) both are engaged in continuous next-word prediction before word onset; (2) both match their pre-onset predictions to the incoming word to calculate post-onset surprise; (3) both rely on contextual embeddings to represent words in natural contexts. Together, our findings suggest that autoregressive DLMs provide a new and biologically feasible computational framework for studying the neural basis of language.
PMCID:8904253
PMID: 35260860
ISSN: 1546-1726
CID: 5190382

Multiscale temporal integration organizes hierarchical computation in human auditory cortex

Norman-Haignere, Sam V; Long, Laura K; Devinsky, Orrin; Doyle, Werner; Irobunda, Ifeoma; Merricks, Edward M; Feldstein, Neil A; McKhann, Guy M; Schevon, Catherine A; Flinker, Adeen; Mesgarani, Nima
To derive meaning from sound, the brain must integrate information across many timescales. What computations underlie multiscale integration in human auditory cortex? Evidence suggests that auditory cortex analyses sound using both generic acoustic representations (for example, spectrotemporal modulation tuning) and category-specific computations, but the timescales over which these putatively distinct computations integrate remain unclear. To answer this question, we developed a general method to estimate sensory integration windows-the time window when stimuli alter the neural response-and applied our method to intracranial recordings from neurosurgical patients. We show that human auditory cortex integrates hierarchically across diverse timescales spanning from ~50 to 400 ms. Moreover, we find that neural populations with short and long integration windows exhibit distinct functional properties: short-integration electrodes (less than ~200 ms) show prominent spectrotemporal modulation selectivity, while long-integration electrodes (greater than ~200 ms) show prominent category selectivity. These findings reveal how multiscale integration organizes auditory computation in the human brain.
PMID: 35145280
ISSN: 2397-3374
CID: 5156382

The refined carbohydrate-insulin model of obesity [Comment]

Devinsky, Orrin
PMID: 35139171
ISSN: 1938-3207
CID: 5167212

Blinded Review of Hippocampal Neuropathology in Sudden Unexplained Death in Childhood Reveals Inconsistent Observations and Similarities to Explained Pediatric Deaths

Leitner, Dominique F; McGuone, Declan; William, Christopher; Faustin, Arline; Askenazi, Manor; Snuderl, Matija; Guzzetta, Melissa; Jarrell, Heather S; Maloney, Katherine; Reichard, Ross; Smith, Colin; Weedn, Victor; Wisniewski, Thomas; Gould, Laura; Devinsky, Orrin
AIMS/OBJECTIVE:Hippocampal findings are implicated in the pathogenesis of sudden unexplained death in childhood (SUDC), although some studies have identified similar findings in sudden explained death in childhood (SEDC) cases. We blindly reviewed hippocampal histology in SUDC and SEDC controls. METHODS:Hippocampal H&E slides (n=67; 36 SUDC, 31 controls) from clinical and forensic collaborators were evaluated by 9 blinded reviewers: 3 board-certified forensic pathologists, 3 neuropathologists, and 3 dual-certified neuropathologist/forensic pathologists. RESULTS:Among nine reviewers, about 50% of hippocampal sections were rated as abnormal (SUDC 52.5%, controls 53.0%), with no difference by cause of death (COD) (p=0.16) or febrile seizure history (p=0.90). There was little agreement among nine reviewers on whether a slide was within normal range (Fleiss' kappa=0.014, p=0.47). Within reviewer groups, there were no findings more frequent in SUDC compared to controls, with variability in pyramidal neuron and dentate gyrus findings. Across reviewer groups, there was concordance for bilamination and granule cell loss. Neither SUDC (51.2%) nor control (55.9%) slides were considered contributory to determining COD (p=0.41). CONCLUSIONS:The lack of an association of hippocampal findings in SUDC and controls, as well as inconsistency of observations by multiple blinded reviewers, indicates discrepancy with previous studies and an inability to reliably identify hippocampal malformation associated with sudden death (HMASD). These findings underscore a need for larger studies to standardize evaluation of hippocampal findings, identify the range of normal variation and, changes unrelated to SUDC or febrile seizures. Molecular studies may help identify novel immunohistological markers that inform on COD.
PMID: 34164845
ISSN: 1365-2990
CID: 4918622

A systems-level analysis highlights microglial activation as a modifying factor in common epilepsies

Altmann, Andre; Ryten, Mina; Di Nunzio, Martina; Ravizza, Teresa; Tolomeo, Daniele; Reynolds, Regina H; Somani, Alyma; Bacigaluppi, Marco; Iori, Valentina; Micotti, Edoardo; Di Sapia, Rossella; Cerovic, Milica; Palma, Eleonora; Ruffolo, Gabriele; Botía, Juan A; Absil, Julie; Alhusaini, Saud; Alvim, Marina K M; Auvinen, Pia; Bargallo, Nuria; Bartolini, Emanuele; Bender, Benjamin; Bergo, Felipe P G; Bernardes, Tauana; Bernasconi, Andrea; Bernasconi, Neda; Bernhardt, Boris C; Blackmon, Karen; Braga, Barbara; Caligiuri, Maria Eugenia; Calvo, Anna; Carlson, Chad; Carr, Sarah J A; Cavalleri, Gianpiero L; Cendes, Fernando; Chen, Jian; Chen, Shuai; Cherubini, Andrea; Concha, Luis; David, Philippe; Delanty, Norman; Depondt, Chantal; Devinsky, Orrin; Doherty, Colin P; Domin, Martin; Focke, Niels K; Foley, Sonya; Franca, Wendy; Gambardella, Antonio; Guerrini, Renzo; Hamandi, Khalid; Hibar, Derrek P; Isaev, Dmitry; Jackson, Graeme D; Jahanshad, Neda; Kälviäinen, Reetta; Keller, Simon S; Kochunov, Peter; Kotikalapudi, Raviteja; Kowalczyk, Magdalena A; Kuzniecky, Ruben; Kwan, Patrick; Labate, Angelo; Langner, Soenke; Lenge, Matteo; Liu, Min; Martin, Pascal; Mascalchi, Mario; Meletti, Stefano; Morita-Sherman, Marcia E; O'Brien, Terence J; Pariente, Jose C; Richardson, Mark P; Rodriguez-Cruces, Raul; Rummel, Christian; Saavalainen, Taavi; Semmelroch, Mira K; Severino, Mariasavina; Striano, Pasquale; Thesen, Thomas; Thomas, Rhys H; Tondelli, Manuela; Tortora, Domenico; Vaudano, Anna Elisabetta; Vivash, Lucy; von Podewils, Felix; Wagner, Jan; Weber, Bernd; Wiest, Roland; Yasuda, Clarissa L; Zhang, Guohao; Zhang, Junsong; Leu, Costin; Avbersek, Andreja; Thom, Maria; Whelan, Christopher D; Thompson, Paul; McDonald, Carrie R; Vezzani, Annamaria; Sisodiya, Sanjay M
AIMS/OBJECTIVE:The causes of distinct patterns of reduced cortical thickness in the common human epilepsies, detectable on neuroimaging and with important clinical consequences, are unknown. We investigated the underlying mechanisms of cortical thinning using a systems-level analysis. METHODS:Imaging-based cortical structural maps from a large-scale epilepsy neuroimaging study were overlaid with highly spatially resolved human brain gene expression data from the Allen Human Brain Atlas. Cell-type deconvolution, differential expression analysis and cell-type enrichment analyses were used to identify differences in cell-type distribution. These differences were followed up in post-mortem brain tissue from humans with epilepsy using Iba1 immunolabelling. Furthermore, to investigate a causal effect in cortical thinning, cell-type-specific depletion was used in a murine model of acquired epilepsy. RESULTS:We identified elevated fractions of microglia and endothelial cells in regions of reduced cortical thickness. Differentially expressed genes showed enrichment for microglial markers and, in particular, activated microglial states. Analysis of post-mortem brain tissue from humans with epilepsy confirmed excess activated microglia. In the murine model, transient depletion of activated microglia during the early phase of the disease development prevented cortical thinning and neuronal cell loss in the temporal cortex. Although the development of chronic seizures was unaffected, the epileptic mice with early depletion of activated microglia did not develop deficits in a non-spatial memory test seen in epileptic mice not depleted of microglia. CONCLUSIONS:These convergent data strongly implicate activated microglia in cortical thinning, representing a new dimension for concern and disease modification in the epilepsies, potentially distinct from seizure control.
PMID: 34388852
ISSN: 1365-2990
CID: 5010892

A cortical network processes auditory error signals during human speech production to maintain fluency

Ozker, Muge; Doyle, Werner; Devinsky, Orrin; Flinker, Adeen
Hearing one's own voice is critical for fluent speech production as it allows for the detection and correction of vocalization errors in real time. This behavior known as the auditory feedback control of speech is impaired in various neurological disorders ranging from stuttering to aphasia; however, the underlying neural mechanisms are still poorly understood. Computational models of speech motor control suggest that, during speech production, the brain uses an efference copy of the motor command to generate an internal estimate of the speech output. When actual feedback differs from this internal estimate, an error signal is generated to correct the internal estimate and update necessary motor commands to produce intended speech. We were able to localize the auditory error signal using electrocorticographic recordings from neurosurgical participants during a delayed auditory feedback (DAF) paradigm. In this task, participants hear their voice with a time delay as they produced words and sentences (similar to an echo on a conference call), which is well known to disrupt fluency by causing slow and stutter-like speech in humans. We observed a significant response enhancement in auditory cortex that scaled with the duration of feedback delay, indicating an auditory speech error signal. Immediately following auditory cortex, dorsal precentral gyrus (dPreCG), a region that has not been implicated in auditory feedback processing before, exhibited a markedly similar response enhancement, suggesting a tight coupling between the 2 regions. Critically, response enhancement in dPreCG occurred only during articulation of long utterances due to a continuous mismatch between produced speech and reafferent feedback. These results suggest that dPreCG plays an essential role in processing auditory error signals during speech production to maintain fluency.
PMID: 35113857
ISSN: 1545-7885
CID: 5153792

Epilepsy Mortality: The Unseen and Unknown [Editorial]

Devinsky, Orrin
PMID: 34795044
ISSN: 1526-632x
CID: 5049612

Imagined speech can be decoded from low- and cross-frequency intracranial EEG features

Proix, Timothée; Delgado Saa, Jaime; Christen, Andy; Martin, Stephanie; Pasley, Brian N; Knight, Robert T; Tian, Xing; Poeppel, David; Doyle, Werner K; Devinsky, Orrin; Arnal, Luc H; Mégevand, Pierre; Giraud, Anne-Lise
Reconstructing intended speech from neural activity using brain-computer interfaces holds great promises for people with severe speech production deficits. While decoding overt speech has progressed, decoding imagined speech has met limited success, mainly because the associated neural signals are weak and variable compared to overt speech, hence difficult to decode by learning algorithms. We obtained three electrocorticography datasets from 13 patients, with electrodes implanted for epilepsy evaluation, who performed overt and imagined speech production tasks. Based on recent theories of speech neural processing, we extracted consistent and specific neural features usable for future brain computer interfaces, and assessed their performance to discriminate speech items in articulatory, phonetic, and vocalic representation spaces. While high-frequency activity provided the best signal for overt speech, both low- and higher-frequency power and local cross-frequency contributed to imagined speech decoding, in particular in phonetic and vocalic, i.e. perceptual, spaces. These findings show that low-frequency power and cross-frequency dynamics contain key information for imagined speech decoding.
PMID: 35013268
ISSN: 2041-1723
CID: 5118532

Genomic analysis of "microphenotypes" in epilepsy

Stanley, Kate; Hostyk, Joseph; Tran, Linh; Amengual-Gual, Marta; Dugan, Patricia; Clark, Justice; Choi, Hyunmi; Tchapyjnikov, Dmitry; Perucca, Piero; Fernandes, Cecilia; Andrade, Danielle; Devinsky, Orrin; Cavalleri, Gianpiero L; Depondt, Chantal; Sen, Arjune; O'Brien, Terence; Heinzen, Erin; Loddenkemper, Tobias; Goldstein, David B; Mikati, Mohamed A; Delanty, Norman
Large international consortia examining the genomic architecture of the epilepsies focus on large diagnostic subgroupings such as "all focal epilepsy" and "all genetic generalized epilepsy". In addition, phenotypic data are generally entered into these large discovery databases in a unidirectional manner at one point in time only. However, there are many smaller phenotypic subgroupings in epilepsy, many of which may have unique genomic risk factors. Such a subgrouping or "microphenotype" may be defined as an uncommon or rare phenotype that is well recognized by epileptologists and the epilepsy community, and which may or may not be formally recognized within the International League Against Epilepsy classification system. Here we examine the genetic structure of a number of such microphenotypes and report in particular on two interesting clinical phenotypes, Jeavons syndrome and pediatric status epilepticus. Although no single gene reached exome-wide statistical significance to be associated with any of the diagnostic categories, we observe enrichment of rare damaging variants in established epilepsy genes among Landau-Kleffner patients (GRIN2A) and pediatric status epilepticus patients (MECP2, SCN1A, SCN2A, SCN8A).
PMID: 34569149
ISSN: 1552-4833
CID: 5067392