Try a new search

Format these results:

Searched for:

in-biosketch:true

person:philim01

Total Results:

137


Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1

Bivona, Trever G; Perez De Castro, Ignacio; Ahearn, Ian M; Grana, Theresa M; Chiu, Vi K; Lockyer, Peter J; Cullen, Peter J; Pellicer, Angel; Cox, Adrienne D; Philips, Mark R
Ras proteins regulate cellular growth and differentiation, and are mutated in 30% of cancers. We have shown recently that Ras is activated on and transmits signals from the Golgi apparatus as well as the plasma membrane but the mechanism of compartmentalized signalling was not determined. Here we show that, in response to Src-dependent activation of phospholipase Cgamma1, the Ras guanine nucleotide exchange factor RasGRP1 translocated to the Golgi where it activated Ras. Whereas Ca(2+) positively regulated Ras on the Golgi apparatus through RasGRP1, the same second messenger negatively regulated Ras on the plasma membrane by means of the Ras GTPase-activating protein CAPRI. Ras activation after T-cell receptor stimulation in Jurkat cells, rich in RasGRP1, was limited to the Golgi apparatus through the action of CAPRI, demonstrating unambiguously a physiological role for Ras on Golgi. Activation of Ras on Golgi also induced differentiation of PC12 cells, transformed fibroblasts and mediated radioresistance. Thus, activation of Ras on Golgi has important biological consequences and proceeds through a pathway distinct from the one that activates Ras on the plasma membrane
PMID: 12845332
ISSN: 1476-4687
CID: 39161

Ras pathway signaling on endomembranes

Bivona, Trever G; Philips, Mark R
Until recently, the plasma membrane has been considered to be a unique platform from which emanate the signaling events regulating or regulated by Ras and its close relatives. For the past few years, the role of endosomes derived from the plasma membrane as platforms for Ras/mitogen-activated protein kinase signaling has been appreciated. More recently, the cytoplasmic face of the Golgi apparatus and endoplasmic reticulum have been shown to host Ras signaling. The biological implications of compartmentalized signaling are only beginning to emerge
PMID: 12648668
ISSN: 0955-0674
CID: 39266

Immunotoxin resistance in multidrug resistant cells

McGrath, Melissa S; Rosenblum, Michael G; Philips, Mark R; Scheinberg, David A
Multidrug resistance (MDR) can be mediated, in part, by overexpression of P-glycoprotein (P-gp) and is characterized by broad resistance to several structurally, chemically, and pharmacologically distinct chemotherapeutic compounds. It has been hypothesized that immunological approaches to cytolysis may be used to overcome drug resistance. RV+ is a P-gp-expressing variant of the human myeloid leukemic cell line HL60 that displays a typical MDR phenotype. MDR RV+ cells displayed relative resistance to the immunotoxin (IT) HuM195-gelonin and to free rGelonin. K562 leukemia cells retrovirally infected to overexpress P-gp are also resistant to HuM195-gelonin. In addition, a monoclonal antibody capable of inhibiting the function of P-gp was able to partially reverse resistance to the IT. These data indicated that the expression of P-gp may contribute to IT resistance in RV+. Resistance to the IT was not mediated through decreased binding to cells, nor reduced internalization into the cell because the IT displayed similar kinetics of binding and internalization for both the parental HL60 and MDR RV+ cell lines. Comparison of the cytotoxicity of other ribosome-inactivating toxins indicated that RV+ cells were not universally resistant to toxins: RV+ cells were sensitive to the actions of ricin A chain, which acts on precisely the same RNase target as gelonin. Sensitivity of the MDR RV+ cells to the protein synthesis inhibitor cycloheximide, saponin, and Pseudomonas exotoxin A additionally confirmed that the resistance was not mediated through the ribosome and that pathways downstream from the inactivation of protein synthesis leading to cell death were not substantially perturbed in the MDR cells. Resistance could be partially abrogated by bafilomycin A, which inhibits lysosomal function. Moreover, direct visualization by confocal microscopy of the intracellular trafficking route of the IT showed that the IT accumulated preferentially in the lysosome in MDR RV+ cells but not in sensitive cells. These observations implicated the process of increased lysosomal degradation as the most likely basis for resistance. Such pathways of resistance may be important in the therapeutic applications of ITs, now becoming available for human use
PMID: 12517780
ISSN: 0008-5472
CID: 64128

Localized diacylglycerol-dependent activation of Ras during Fc gamma receptor-mediated phagocytosis [Meeting Abstract]

Botelho, RJ; Mojdami, D; Chiu, VK; Bivona, T; Philips, MR; Grinstein, S
ISI:000179569101264
ISSN: 1059-1524
CID: 37187

Membrane trafficking of heterotrimeric G proteins via the endoplasmic reticulum and Golgi

Michaelson, David; Ahearn, Ian; Bergo, Martin; Young, Stephen; Philips, Mark
Membrane targeting of G-protein alphabetagamma heterotrimers was investigated in live cells by use of Galpha and Ggamma subunits tagged with spectral mutants of green fluorescent protein. Unlike Ras proteins, Gbetagamma contains a single targeting signal, the CAAX motif, which directed the dimer to the endoplasmic reticulum. Endomembrane localization of farnesylated Ggamma(1), but not geranylgeranylated Ggamma(2), required carboxyl methylation. Targeting of the heterotrimer to the plasma membrane (PM) required coexpression of all three subunits, combining the CAAX motif of Ggamma with the fatty acyl modifications of Galpha. Galpha associated with Gbetagamma on the Golgi and palmitoylation of Galpha was required for translocation of the heterotrimer to the PM. Thus, two separate signals, analogous to the dual-signal targeting mechanism of Ras proteins, cooperate to target heterotrimeric G proteins to the PM via the endomembrane
PMCID:124159
PMID: 12221133
ISSN: 1059-1524
CID: 47809

Ras signalling on the endoplasmic reticulum and the Golgi

Chiu, Vi K; Bivona, Trever; Hach, Angela; Sajous, J Bernard; Silletti, Joseph; Wiener, Heidi; Johnson, Ronald L 2nd; Cox, Adrienne D; Philips, Mark R
Current models evoke the plasma membrane (PM) as the exclusive platform from which Ras regulates signalling. We developed a fluorescent probe that reports where and when Ras is activated in living cells. We show that oncogenic H-Ras and N-Ras engage Raf-1 on the Golgi and that endogenous Ras and unpalmitoylated H-Ras are activated in response to mitogens on the Golgi and endoplasmic reticulum (ER), respectively. We also demonstrate that H-Ras that is restricted to the ER can activate the Erk pathway and transform fibroblasts, and that Ras localized on different membrane compartments differentially engages various signalling pathways. Thus, Ras signalling is not limited to the PM, but also proceeds on the endomembrane
PMID: 11988737
ISSN: 1465-7392
CID: 32483

Activity of G gamma prenylcysteine carboxyl methyltransferase

Michaelson, David; Philips, Mark R
PMID: 11771386
ISSN: 0076-6879
CID: 27263

Signaling mediated by the closely related mammalian Rho family GTPases TC10 and Cdc42 suggests distinct functional pathways

Murphy GA; Jillian SA; Michaelson D; Philips MR; D'Eustachio P; Rush MG
The mammalian Rho family GTPases TC10 and Cdc42 share many properties. Activated forms of both proteins stimulate transcription mediated by nuclear factor kappaB, serum response factor, and the cyclin D1 promoter; activate c-Jun NH2-terminal kinase; cooperate with activated Raf to transform NIH-3T3 cells; and, by a mechanism independent of all of these effects, induce filopodia formation. In contrast, previously reported differences between TC10 and Cdc42 are not striking. We now present studies of TC10 and Cdc42 in cell culture that reveal clear functional differences: (a) wild-type TC10 localizes predominantly to the plasma membrane and less extensively to a perinuclear membranous compartment, whereas wild-type Cdc42 localizes predominantly to this compartment and less extensively to the plasma membrane; (b) expression of Rho guanine nucleotide dissociation inhibitor alpha results in a redistribution of wild-type Cdc42 to the cytosol but has no effect on the plasma membrane localization of wild-type TC10; (c) TC10 fails to rescue a Saccharomyces cerevisiae cdc42 mutation, unlike mammalian Cdc42; (d) dominant negative Cdc42, but not dominant negative TC10, inhibits neurite outgrowth in PC12 cells stimulated by nerve growth factor; and (e) activation of nuclear factor kappaB-dependent transcription by Cdc42, but not by TC10, is inhibited by sodium salicylate. These findings point to distinct pathways in which TC10 and Cdc42 may act and distinct modes of regulation of these proteins
PMID: 11306516
ISSN: 1044-9523
CID: 26749

Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding

Michaelson D; Silletti J; Murphy G; D'Eustachio P; Rush M; Philips MR
Determinants of membrane targeting of Rho proteins were investigated in live cells with green fluorescent fusion proteins expressed with or without Rho-guanine nucleotide dissociation inhibitor (GDI)alpha. The hypervariable region determined to which membrane compartment each protein was targeted. Targeting was regulated by binding to RhoGDI alpha in the case of RhoA, Rac1, Rac2, and Cdc42hs but not RhoB or TC10. Although RhoB localized to the plasma membrane (PM), Golgi, and motile peri-Golgi vesicles, TC10 localized to PMs and endosomes. Inhibition of palmitoylation mislocalized H-Ras, RhoB, and TC10 to the endoplasmic reticulum. Although overexpressed Cdc42hs and Rac2 were observed predominantly on endomembrane, Rac1 was predominantly at the PM. RhoA was cytosolic even when expressed at levels in vast excess of RhoGDI alpha. Oncogenic Dbl stimulated translocation of green fluorescent protein (GFP)-Rac1, GFP-Cdc42hs, and GFP-RhoA to lamellipodia. RhoGDI binding to GFP-Cdc42hs was not affected by substituting farnesylation for geranylgeranylation. A palmitoylation site inserted into RhoA blocked RhoGDI alpha binding. Mutations that render RhoA, Cdc42hs, or Rac1, either constitutively active or dominant negative abrogated binding to RhoGDI alpha and redirected expression to both PMs and internal membranes. Thus, despite the common essential feature of the CAAX (prenylation, AAX tripeptide proteolysis, and carboxyl methylation) motif, the subcellular localizations of Rho GTPases, like their functions, are diverse and dynamic
PMCID:2193662
PMID: 11149925
ISSN: 0021-9525
CID: 17229

Green fluorescent protein-tagged Ras proteins for intracellular localization

Choy E; Philips M
PMID: 11305117
ISSN: 0076-6879
CID: 21199