Searched for: in-biosketch:true
person:wkd1
Localization of dense intracranial electrode arrays using magnetic resonance imaging
Yang, Andrew I; Wang, Xiuyuan; Doyle, Werner K; Halgren, Eric; Carlson, Chad; Belcher, Thomas L; Cash, Sydney S; Devinsky, Orrin; Thesen, Thomas
Intracranial electrode arrays are routinely used in the pre-surgical evaluation of patients with medically refractory epilepsy, and recordings from these electrodes have been increasingly employed in human cognitive neurophysiology due to their high spatial and temporal resolution. For both researchers and clinicians, it is critical to localize electrode positions relative to the subject-specific neuroanatomy. In many centers, a post-implantation MRI is utilized for electrode detection because of its higher sensitivity for surgical complications and the absence of radiation. However, magnetic susceptibility artifacts surrounding each electrode prohibit unambiguous detection of individual electrodes, especially those that are embedded within dense grid arrays. Here, we present an efficient method to accurately localize intracranial electrode arrays based on pre- and post-implantation MR images that incorporates array geometry and the individual's cortical surface. Electrodes are directly visualized relative to the underlying gyral anatomy of the reconstructed cortical surface of individual patients. Validation of this approach shows high spatial accuracy of the localized electrode positions (mean of 0.96mm+/-0.81mm for 271 electrodes across 8 patients). Minimal user input, short processing time, and utilization of radiation-free imaging are strong incentives to incorporate quantitatively accurate localization of intracranial electrode arrays with MRI for research and clinical purposes. Co-registration to a standard brain atlas further allows inter-subject comparisons and relation of intracranial EEG findings to the larger body of neuroimaging literature.
PMCID:4408869
PMID: 22759995
ISSN: 1053-8119
CID: 177022
Progressive optic neuropathy caused by contact with the carotid artery: Improvement after microvascular decompression
Strom, RG; Fouladvand, M; Pramanik, BK; Doyle, WK; Huang, PP
PMID: 22284084
ISSN: 0303-8467
CID: 155783
An implantable triple-function device for local drug delivery, cerebrospinal fluid removal and EEG recording in the cranial subdural/subarachnoid space of primates
Ludvig N; Medveczky G; Rizzolo R; Tang HM; Baptiste SL; Doyle WK; Devinsky O; Carlson C; French JA; Kral JG; Charchaflieh J; Kuzniecky RI
Transmeningeal pharmacotherapy for cerebral cortical disorders requires drug delivery through the subdural/subarachnoid space, ideally with a feedback controlled mechanism. We have developed a device suitable for this function. The first novel component of the apparatus is a silicone rubber strip equipped with (a) fluid-exchange ports for both drug delivery and local cerebrospinal fluid (CSF) removal, and (b) EEG recording electrode contacts. This strip can be positioned between the dura and pia maters. The second novel component is an implantable dual minipump that directs fluid movement to and from the silicone strip and is accessible for refilling and emptying the drug and CSF reservoirs, respectively. This minipump is regulated by a battery-powered microcontroller integrating a bi-directional radiofrequency (RF) communication module. The entire apparatus was implanted in 5 macaque monkeys, with the subdural strip positioned over the frontal cortex and the minipump assembly secured to the cranium under a protective cap. The system was successfully tested for up to 8months for (1) transmeningeal drug delivery using acetylcholine (ACh) and muscimol as test compounds, (2) RF-transmission of neocortical EEG data to assess the efficacy of drug delivery, and (3) local CSF removal for subsequent diagnostic analyses. The device can be used for (a) monitoring neocortical electrophysiology and neurochemistry in freely behaving nonhuman primates for more than 6months, (b) determining the neurobiological impact of subdural/subarachnoid drug delivery interfaces, (c) obtaining novel neuropharmacological data on the effects of central nervous system (CNS) drugs, and (d) performing translational studies to develop subdural pharmacotherapy devices
PMID: 22027491
ISSN: 1872-678x
CID: 139939
Sequential then interactive processing of letters and words in the left fusiform gyrus
Thesen, Thomas; McDonald, Carrie R; Carlson, Chad; Doyle, Werner; Cash, Syd; Sherfey, Jason; Felsovalyi, Olga; Girard, Holly; Barr, William; Devinsky, Orrin; Kuzniecky, Ruben; Halgren, Eric
Despite decades of cognitive, neuropsychological and neuroimaging studies, it is unclear if letters are identified before word-form encoding during reading, or if letters and their combinations are encoded simultaneously and interactively. Here using functional magnetic resonance imaging, we show that a 'letter-form' area (responding more to consonant strings than false fonts) can be distinguished from an immediately anterior 'visual word-form area' in ventral occipito-temporal cortex (responding more to words than consonant strings). Letter-selective magnetoencephalographic responses begin in the letter-form area approximately 60 ms earlier than word-selective responses in the word-form area. Local field potentials confirm the latency and location of letter-selective responses. This area shows increased high-gamma power for approximately 400 ms, and strong phase-locking with more anterior areas supporting lexico-semantic processing. These findings suggest that during reading, visual stimuli are first encoded as letters before their combinations are encoded as words. Activity then rapidly spreads anteriorly, and the entire network is engaged in sustained integrative processing.
PMCID:4407686
PMID: 23250414
ISSN: 2041-1723
CID: 204072
Impact of Failed Intracranial Epilepsy Surgery on the Effectiveness of Subsequent Vagus Nerve Stimulation
Elliott RE; Morsi A; Geller EB; Carlson CC; Devinsky O; Doyle WK
BACKGROUND:: Using the Cyberonics registry, Amar and colleagues (2004) reported poorer efficacy of vagus nerve stimulation (VNS) in patients who failed intracranial epilepsy surgery (IES). OBJECTIVE:: To study the impact of failed IES and other surrogate marker of severe epilepsy on VNS effectiveness in a large cohort with treatment-resistant epilepsy (TRE). METHODS:: We retrospectively reviewed 376 patients (188 females; 265 adults; mean age of 29.4 years at implantation) with TRE who underwent VNS implantation between 1997 and 2008 and had at least 1 year of follow-up. One hundred ten patients (29.3%) had failed one or more prior craniotomies for TRE and 266 (70.7%) had no history of IES. RESULTS:: The mean duration of VNS therapy was 5.1 years. Patients with prior IES were more commonly male and adult, had a greater number of seizure types and more commonly had focal or multifocal versus generalized seizures (P<0.05). There was no significant difference in the mean percentage seizure reduction between patients with and without a history of IES (59.1% vs. 56.5%, P=0.42). There was no correlation between type of failed IES (callosotomy versus resection) and seizure reduction with VNS therapy. CONCLUSION:: Failed IES did not affect the response to VNS therapy. Unlike prior reports, patients with callosotomy did not respond better than those who had resective surgery. Nearly 50% of patients experienced at least 50% reduction in seizure frequency. VNS should be considered a palliative treatment option for patients with TRE, including patients who failed cranial epilepsy surgeries
PMID: 21558973
ISSN: 1524-4040
CID: 134075
Medically refractory epilepsy in autism
Sansa, Gemma; Carlson, Chad; Doyle, Werner; Weiner, Howard L; Bluvstein, Judith; Barr, William; Devinsky, Orrin
Purpose: Epilepsy and electroencephalographic abnormalities are frequent in idiopathic autism, but there is little information regarding treatment-resistant epilepsy (TRE) in this group. We sought to define the clinical and electrophysiologic characteristics and treatment outcomes in these patients. Methods: We retrospectively reviewed clinical and laboratory data of patients with idiopathic autism evaluated at NYU Epilepsy Center during a 20-year period. Key Findings: One hundred twenty-seven patients had idiopathic autism and at least one epileptic seizure; 33.9% had TRE and 27.5% were seizure free. The remaining 38.6% of patients had infrequent seizures or insufficient data to categorize. Patients with TRE had a significantly earlier onset of seizures than seizure-free patients, and a trend for more developmental regression and motor and language delays. Three patients had surgical resection (two had limited improvement and one had no improvement) and one had an anterior callosotomy (no improvement). Vagus nerve stimulator (VNS) implantation provided limited improvement (2 patients) and no improvement (7). Significance: This study found that TRE is common in idiopathic autism and more common with early age of seizure onset. Relatively few patients underwent surgical resection due to multifocal partial epilepsy, comorbid generalized epilepsy, or limited impact of ongoing partial seizures given other problems related to autism. Our small sample suggests that surgical and VNS outcomes in this group are less favorable than in other TRE populations
PMID: 21671922
ISSN: 1528-1167
CID: 134461
Vagus nerve stimulation for children with treatment-resistant epilepsy: a consecutive series of 141 cases
Elliott, Robert E; Rodgers, Shaun D; Bassani, Luigi; Morsi, Amr; Geller, Eric B; Carlson, Chad; Devinsky, Orrin; Doyle, Werner K
Object The authors undertook this study to analyze the efficacy of vagus nerve stimulation (VNS) in a large consecutive series of children 18 years of age and younger with treatment-resistant epilepsy and compare the safety and efficacy in children under 12 years of age with the outcomes in older children. Methods The authors retrospectively reviewed 141 consecutive cases involving children (75 girls and 66 boys) with treatment-resistant epilepsy in whom primary VNS implantation was performed by the senior author between November 1997 and April 2008 and who had at least 1 year of follow-up since implantation. The patients' mean age at vagus nerve stimulator insertion was 11.1 years (range 1-18 years). Eighty-six children (61.0%) were younger than 12 years at time of VNS insertion (which constitutes off-label usage of this device). Results Follow-up was complete for 91.8% of patients and the mean duration of VNS therapy in these patients was 5.2 years (range 25 days-11.4 years). Seizure frequency significantly improved with VNS therapy (mean reduction 58.9%, p < 0.0001) without a significant reduction in antiepileptic medication burden (median number of antiepileptic drugs taken 3, unchanged). Reduction in seizure frequency of at least 50% occurred in 64.8% of patients and 41.4% of patients experienced at least a 75% reduction. Major (3) and minor (6) complications occurred in 9 patients (6.4%) and included 1 deep infection requiring device removal, 1 pneumothorax, 2 superficial infections treated with antibiotics, 1 seroma/hematoma treated with aspiration, persistent cough in 1 patient, severe but transient neck pain in 1 patient, and hoarseness in 2 patients. There was no difference in efficacy or complications between children 12 years of age and older (FDA-approved indication) and those younger than 12 years of age (off-label usage). Linear regression analyses did not identify any demographic and clinical variables that predicted response to VNS. Conclusions Vagus nerve stimulation is a safe and effective treatment for treatment-resistant epilepsy in young adults and children. Over 50% of patients experienced at least 50% reduction in seizure burden. Children younger than 12 years had a response similar to that of older children with no increase in complications. Given the efficacy of this device and the devastating effects of persistent epilepsy during critical developmental epochs, randomized trials are needed to potentially expand the indications for VNS to include younger children
PMID: 21529189
ISSN: 1933-0715
CID: 134077
Efficacy of vagus nerve stimulation over time: Review of 65 consecutive patients with treatment-resistant epilepsy treated with VNS >10years
Elliott, Robert E; Morsi, Amr; Tanweer, Omar; Grobelny, Bartosz; Geller, Eric; Carlson, Chad; Devinsky, Orrin; Doyle, Werner K
OBJECTIVE: Studies have reported improved seizure control with increased duration of vagus nerve stimulation (VNS) but are prone to methodological biases. We analyzed the efficacy of VNS over time in patients with treatment-resistant epilepsy (TRE) who underwent VNS therapy 10 or more years. METHODS: We retrospectively reviewed 65 consecutive patients (29 females) who underwent VNS therapy >/=10years. The mean age at VNS insertion was 30.0years. Forty-four adults (>/=18years; 67.7%) and 21 children (32.3%) were included. Seizure frequency and antiepileptic drug (AED) regimens were recorded prior to VNS and, following VNS insertion, at 6months, 1year, 2years, and every 2years thereafter. RESULTS: The mean duration of VNS therapy for this group was 10.4years, and the mean decrease in seizure frequency at last follow-up was 76.3%. The mean reduction in seizures at 6months and years 1, 2, 4, 6, 8, and 10years was 35.7, 52.1, 58.3, 60.4, 65.7, 75.5, and 75.5%, respectively. Seizure frequency was significantly reduced from baseline at each of the recorded intervals (P<0.001). There was a trend toward increased AED burden in the latter years of the follow-up period. CONCLUSION: Following a 'ramp-up' and accommodation period throughout the initial 24months after VNS implantation, seizure control improved slightly over the subsequent years of therapy and eventually stabilized. Variation in seizure frequency, however, was common, and frequent changes in AED regimens or stimulation parameters were likely an important and possibly synergistic component of seizure control
PMID: 21296622
ISSN: 1525-5069
CID: 128791
Vagus nerve stimulation in 436 consecutive patients with treatment-resistant epilepsy: Long-term outcomes and predictors of response
Elliott, Robert E; Morsi, Amr; Kalhorn, Stephen P; Marcus, Joshua; Sellin, Jonathan; Kang, Matthew; Silverberg, Alyson; Rivera, Edwin; Geller, Eric; Carlson, Chad; Devinsky, Orrin; Doyle, Werner K
OBJECTIVE: The goal of this study was to assess the efficacy and safety of vagus nerve stimulation in a consecutive series of adults and children with treatment-resistant epilepsy (TRE). METHODS: In this retrospective review of a prospectively created database of 436 consecutive patients who underwent vagus nerve stimulator implantation for TRE between November 1997 and April 2008, there were 220 (50.5%) females and 216 (49.5%) males ranging in age from 1 to 76years at the time of implantation (mean: 29.0+/-16.5). Thirty-three patients (7.6%) in the primary implantation group had inadequate follow-up (<3months from implantation) and three patients had early device removal because of infection and were excluded from seizure control outcome analyses. RESULTS: Duration of vagus nerve stimulation treatment varied from 10days to 11years (mean: 4.94years). Mean seizure frequency significantly improved following implantation (mean reduction: 55.8%, P<0.0001). Seizure control >/=90% was achieved in 90 patients (22.5%), >/=75% seizure control in 162 patients (40.5%), >/=50% improvement in 255 patients (63.75%), and <50% improvement in 145 patients (36.25%). Permanent injury to the vagus nerve occurred in 2.8% of patients. CONCLUSION: Vagus nerve stimulation is a safe and effective palliative treatment option for focal and generalized TRE in adults and children. When used in conjunction with a multidisciplinary and multimodality treatment regimen including aggressive antiepileptic drug regimens and epilepsy surgery when appropriate, more than 60% of patients with TRE experienced at least a 50% reduction in seizure burden. Good results were seen in patients with non-U.S. Food and Drug Administration-approved indications. Prospective, randomized trials are needed for patients with generalized epilepsies and for younger children to potentially expand the number of patients who may benefit from this palliative treatment
PMID: 21144802
ISSN: 1525-5069
CID: 120645
Widespread Brain Areas Engaged during a Classical Auditory Streaming Task Revealed by Intracranial EEG
Dykstra, Andrew R; Halgren, Eric; Thesen, Thomas; Carlson, Chad E; Doyle, Werner; Madsen, Joseph R; Eskandar, Emad N; Cash, Sydney S
The auditory system must constantly decompose the complex mixture of sound arriving at the ear into perceptually independent streams constituting accurate representations of individual sources in the acoustic environment. How the brain accomplishes this task is not well understood. The present study combined a classic behavioral paradigm with direct cortical recordings from neurosurgical patients with epilepsy in order to further describe the neural correlates of auditory streaming. Participants listened to sequences of pure tones alternating in frequency and indicated whether they heard one or two 'streams.' The intracranial EEG was simultaneously recorded from sub-dural electrodes placed over temporal, frontal, and parietal cortex. Like healthy subjects, patients heard one stream when the frequency separation between tones was small and two when it was large. Robust evoked-potential correlates of frequency separation were observed over widespread brain areas. Waveform morphology was highly variable across individual electrode sites both within and across gross brain regions. Surprisingly, few evoked-potential correlates of perceptual organization were observed after controlling for physical stimulus differences. The results indicate that the cortical areas engaged during the streaming task are more complex and widespread than has been demonstrated by previous work, and that, by-and-large, correlates of bistability during streaming are probably located on a spatial scale not assessed - or in a brain area not examined - by the present study
PMCID:3154443
PMID: 21886615
ISSN: 1662-5161
CID: 140414