Searched for: in-biosketch:true
person:goldbi05
Adipose-specific lipoprotein lipase deficiency more profoundly affects brown than white fat biology
Garcia-Arcos, Itsaso; Hiyama, Yaeko; Drosatos, Konstantinos; Bharadwaj, Kalyani G; Hu, Yunying; Son, Ni Huiping; O'Byrne, Sheila M; Chang, Chuchun L; Deckelbaum, Richard J; Takahashi, Manabu; Westerterp, Marit; Obunike, Joseph C; Jiang, Hongfeng; Yagyu, Hiroaki; Blaner, William S; Goldberg, Ira J
Adipose fat storage is thought to require uptake of circulating triglyceride (TG)-derived fatty acids via lipoprotein lipase (LpL). To determine how LpL affects the biology of adipose tissue, we created adipose-specific LpL knock-out (ATLO) mice, and we compared them with whole body LpL knock-out mice rescued with muscle LpL expression (MCK/L0) and wild type (WT) mice. ATLO LpL mRNA and activity were reduced, respectively, 75 and 70% in gonadal adipose tissue (GAT), 90 and 80% in subcutaneous tissue, and 84 and 85% in brown adipose tissue (BAT). ATLO mice had increased plasma TG levels associated with reduced chylomicron TG uptake into BAT and lung. ATLO BAT, but not GAT, had altered TG composition. GAT from MCK/L0 was smaller and contained less polyunsaturated fatty acids in TG, although GAT from ATLO was normal unless LpL was overexpressed in muscle. High fat diet feeding led to less adipose in MCK/L0 mice but TG acyl composition in subcutaneous tissue and BAT reverted to that of WT. Therefore, adipocyte LpL in BAT modulates plasma lipoprotein clearance, and the greater metabolic activity of this depot makes its lipid composition more dependent on LpL-mediated uptake. Loss of adipose LpL reduces fat accumulation only if accompanied by greater LpL activity in muscle. These data support the role of LpL as the "gatekeeper" for tissue lipid distribution.
PMCID:3656262
PMID: 23542081
ISSN: 0021-9258
CID: 948412
Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis
Nagareddy, Prabhakara R; Murphy, Andrew J; Stirzaker, Roslynn A; Hu, Yunying; Yu, Shiquing; Miller, Rachel G; Ramkhelawon, Bhama; Distel, Emilie; Westerterp, Marit; Huang, Li-Shin; Schmidt, Ann Marie; Orchard, Trevor J; Fisher, Edward A; Tall, Alan R; Goldberg, Ira J
Diabetes is a major risk factor for atherosclerosis. Although atherosclerosis is initiated by deposition of cholesterol-rich lipoproteins in the artery wall, the entry of inflammatory leukocytes into lesions fuels disease progression and impairs resolution. We show that diabetic mice have increased numbers of circulating neutrophils and Ly6-C(hi) monocytes, reflecting hyperglycemia-induced proliferation and expansion of bone marrow myeloid progenitors and release of monocytes into the circulation. Increased neutrophil production of S100A8/S100A9, and its subsequent interaction with the receptor for advanced glycation end products on common myeloid progenitor cells, leads to enhanced myelopoiesis. Treatment of hyperglycemia reduces monocytosis, entry of monocytes into atherosclerotic lesions, and promotes regression. In patients with type 1 diabetes, plasma S100A8/S100A9 levels correlate with leukocyte counts and coronary artery disease. Thus, hyperglycemia drives myelopoiesis and promotes atherogenesis in diabetes.
PMCID:3992275
PMID: 23663738
ISSN: 1550-4131
CID: 426002
Peroxisome proliferator-activated receptor-gamma activation prevents sepsis-related cardiac dysfunction and mortality in mice
Drosatos, Konstantinos; Khan, Raffay S; Trent, Chad M; Jiang, Hongfeng; Son, Ni-Huiping; Blaner, William S; Homma, Shunichi; Schulze, P Christian; Goldberg, Ira J
BACKGROUND: Cardiac dysfunction with sepsis is associated with both inflammation and reduced fatty acid oxidation. We hypothesized that energy deprivation accounts for sepsis-related cardiac dysfunction. METHODS AND RESULTS: Escherichia coli lipopolysaccharide (LPS) administered to C57BL/6 mice (wild type) induced cardiac dysfunction and reduced fatty acid oxidation and mRNA levels of peroxisome proliferator-activated receptor (PPAR)-alpha and its downstream targets within 6-8 hours. Transgenic mice in which cardiomyocyte-specific expression of PPARgamma is driven by the alpha-myosin heavy chain promoter (alphaMHC-PPARgamma) were protected from LPS-induced cardiac dysfunction. Despite a reduction in PPARalpha, fatty acid oxidation and associated genes were not decreased in hearts of LPS-treated alphaMHC-PPARgamma mice. LPS treatment, however, continued to induce inflammation-related genes, such as interleukin-1alpha, interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in hearts of alphaMHC-PPARgamma mice. Treatment of wild-type mice with LPS and the PPARgamma agonist, rosiglitazone, but not the PPARalpha agonist (WY-14643), increased fatty acid oxidation, prevented LPS-mediated reduction of mitochondria, and treated cardiac dysfunction, as well as it improved survival, despite continued increases in the expression of cardiac inflammatory markers. CONCLUSIONS: Activation of PPARgamma in LPS-treated mice prevented cardiac dysfunction and mortality, despite development of cardiac inflammation and PPARalpha downregulation.
PMCID:3690188
PMID: 23572494
ISSN: 1941-3289
CID: 948422
Fish oil selectively improves heart function in a mouse model of lipid-induced cardiomyopathy
Khan, Raffay S; Chokshi, Aalap; Drosatos, Konstantinos; Jiang, Hongfeng; Yu, Shuiqing; Harris, Collette R; Schulze, P Christian; Homma, Shunichi; Blaner, William S; Shulman, Gerald I; Huang, Li-Shin; Goldberg, Ira J
Fish oil (FO) supplementation may improve cardiac function in some patients with heart failure, especially those with diabetes. To determine why this occurs, we studied the effects of FO in mice with heart failure either due to transgenic expression of the lipid uptake protein acyl CoA synthetase 1 (ACS1) or overexpression of the transcription factor peroxisomal proliferator-activated receptor (PPAR) gamma via the cardiac-specific myosin heavy chain (MHC) promoter. ACS1 mice and control littermates were fed 3 diets containing low-dose or high-dose FO or nonpurified diet (NPD) for 6 weeks. MHC-PPARgamma mice were fed low-dose FO or NPD. Compared with control mice fed with NPD, ACS1, and MHC-PPARgamma, mice fed with NPD had reduced cardiac function and survival with cardiac fibrosis. In contrast, ACS1 mice fed with high-dose FO had better cardiac function, survival, and less myocardial fibrosis. FO increased eicosapentaenoic and docosahexaenoic acids and reduced saturated fatty acids in cardiac diacylglycerols. This was associated with reduced protein kinase C alpha and beta activation. In contrast, low-dose FO reduced MHC-PPARgamma mice survival with no change in protein kinase C activation or cardiac function. Thus, dietary FO reverses fibrosis and improves cardiac function and survival of ACS1 mice but does not benefit all forms of lipid-mediated cardiomyopathy.
PMCID:3622223
PMID: 23567901
ISSN: 0160-2446
CID: 948432
Hepatic retinoid stores are required for normal liver regeneration
Shmarakov, Igor O; Jiang, Hongfeng; Yang, Kryscilla Jian Zhang; Goldberg, Ira J; Blaner, William S
Preliminary studies of liver regeneration induced by partial hepatectomy (PHE) identified a substantial depletion of hepatic retinoid stores, by greater than 70%, in regenerating livers of wild-type C57Bl/6J mice. To understand this, we compared responses of wild-type and lecithin:retinol acyltransferase (Lrat)-deficient mice, which totally lack hepatic retinoid stores, to PHE. The Lrat-deficient livers showed delayed regeneration in the first 24 h after PHE. At 12 h after PHE, we observed significantly less mRNA expression for growth factors and cytokines implicated in regulating the priming phase of liver regeneration, specifically for Hgf and Tgfalpha, but not Tgfbeta. Compared with wild-type mice, the changes in mRNA levels for p21 and cyclins E1, B1, and A2 mRNAs and for hepatocellular BrdU incorporation and mitoses were delayed (i.e., shifted to later times) in regenerating Lrat(-/-) livers. Concentrations of all-trans-retinoic acid were significantly lower in the livers of Lrat(-/-) mice following PHE, and this was accompanied by diminished expression of known retinoid-responsive genes. At later times after PHE, the rate of liver weight restoration for Lrat(-/-) mice was parallel to that of wild-type mice, although additional biochemical differences were observed. Thus, hepatic retinoid stores are required for maintaining expression of signaling molecules that regulate cell proliferation and differentiation immediately after hepatic injury, accounting for the delayed restoration of liver mass in Lrat(-/-) mice.
PMCID:3605997
PMID: 23349206
ISSN: 0022-2275
CID: 948452
Macrophage lipoprotein lipase modulates the development of atherosclerosis but not adiposity
Takahashi, Manabu; Yagyu, Hiroaki; Tazoe, Fumiko; Nagashima, Shuichi; Ohshiro, Taichi; Okada, Kenta; Osuga, Jun-ichi; Goldberg, Ira J; Ishibashi, Shun
The role of macrophage lipoprotein lipase (LpL) in the development of atherosclerosis and adiposity was examined in macrophage LpL knockout (MLpLKO) mice. MLpLKO mice were generated using cre-loxP gene targeting. Loss of LpL in macrophages did not alter plasma LpL activity or lipoprotein levels. Incubation of apolipoprotein E (ApoE)-deficient beta-VLDL with peritoneal macrophages from ApoE knockout mice lacking macrophage LpL (MLpLKO/ApoEKO) led to less cholesteryl ester formation than that found with ApoEKO macrophages. MLpLKO/ApoEKO macrophages had reduced intracellular triglyceride levels, with decreased CD36 and carnitine palmitoyltransferase-1 mRNA levels compared with ApoEKO macrophages, when incubated with VLDL. Although both MLpLKO/ApoEKO and ApoEKO mice developed comparable hypercholesterolemia in response to feeding with a Western-type diet for 12 weeks, atherosclerosis was less in MLpLKO/ApoEKO mice. Epididymal fat mass and gene expression levels associated with inflammation did not differ between the two groups. In conclusion, macrophage LpL plays an important role in the development of atherosclerosis but not adiposity.
PMCID:3605988
PMID: 23378601
ISSN: 0022-2275
CID: 948442
Intestinal DGAT1 deficiency reduces postprandial triglyceride and retinyl ester excursions by inhibiting chylomicron secretion and delaying gastric emptying
Ables, Gene P; Yang, Kryscilla Jian Zhang; Vogel, Silke; Hernandez-Ono, Antonio; Yu, Shuiqing; Yuen, Jason J; Birtles, Susan; Buckett, Linda K; Turnbull, Andrew V; Goldberg, Ira J; Blaner, William S; Huang, Li-Shin; Ginsberg, Henry N
Acyl CoA:diacylglycerol acyltransferase (DGAT) 1 catalyzes the final step of triglyceride (TG) synthesis. We show that acute administration of a DGAT1 inhibitor (DGAT1i) by oral gavage or genetic deletion of intestinal Dgat1 (intestine-Dgat1(-/-)) markedly reduced postprandial plasma TG and retinyl ester excursions by inhibiting chylomicron secretion in mice. Loss of DGAT1 activity did not affect the efficiency of retinol esterification, but it did reduce TG and retinoid accumulation in the small intestine. In contrast, inhibition of microsomal triglyceride transfer protein (MTP) reduced chylomicron secretion after oral fat/retinol loads, but with accumulation of dietary TG and retinoids in the small intestine. Lack of intestinal accumulation of TG and retinoids in DGAT1i-treated or intestine-Dgat1(-/-) mice resulted, in part, from delayed gastric emptying associated with increased plasma levels of glucagon-like peptide (GLP)-1. However, neither bypassing the stomach through duodenal oil injection nor inhibiting the receptor for GLP-1 normalized postprandial TG or retinyl esters excursions in the absence of DGAT1 activity. In summary, intestinal DGAT1 inhibition or deficiency acutely delayed gastric emptying and inhibited chylomicron secretion; however, the latter occurred when gastric emptying was normal or when lipid was administered directly into the small intestine. Long-term hepatic retinoid metabolism was not impacted by DGAT1 inhibition.
PMCID:3466005
PMID: 22911105
ISSN: 0022-2275
CID: 948472
Thyroid hormone reduces cholesterol via a non-LDL receptor-mediated pathway
Goldberg, Ira J; Huang, Li-Shin; Huggins, Lesley A; Yu, Shuiqing; Nagareddy, Prabhakara R; Scanlan, Thomas S; Ehrenkranz, Joel R
Although studies in vitro and in hypothyroid animals show that thyroid hormone can, under some circumstances, modulate the actions of low-density lipoprotein (LDL) receptors, the mechanisms responsible for thyroid hormone's lipid-lowering effects are not completely understood. We tested whether LDL receptor (LDLR) expression was required for cholesterol reduction by treating control and LDLR-knockout mice with two forms of thyroid hormone T(3) and 3,5-diiodo-l-thyronine. High doses of both 3,5-diiodo-l-thyronine and T(3) dramatically reduced circulating total and very low-density lipoprotein/LDL cholesterol ( approximately 70%) and were associated with reduced plasma T(4) level. The cholesterol reduction was especially evident in the LDLR-knockout mice. Circulating levels of both apolipoprotein B (apo)B48 and apoB100 were decreased. Surprisingly, this reduction was not associated with increased protein or mRNA expression of the hepatic lipoprotein receptors LDLR-related protein 1 or scavenger receptor-B1. Liver production of apoB was markedly reduced, whereas triglyceride production was increased. Thus, thyroid hormones reduce apoB lipoproteins via a non-LDLR pathway that leads to decreased liver apoB production. This suggests that drugs that operate in a similar manner could be a new therapy for patients with genetic defects in the LDLR.
PMCID:3473203
PMID: 22948212
ISSN: 0013-7227
CID: 948462
Sphingolipids, lipotoxic cardiomyopathy, and cardiac failure
Park, Tae-Sik; Goldberg, Ira J
In the setting of obesity and type 2 diabetes mellitus, the ectopic disposition of lipids may be a cause of heart failure. Clinical studies have clearly shown a correlation between the accumulation of triglycerides and heart dysfunction. In this process, it is likely that there are also changes in the contents of sphingolipids. Sphingolipids are important structural and signaling molecules. One specific sphingolipid, ceramide, may cause cardiac dysfunction, whereas another, sphingosine 1-phosphate, is cardioprotective. In this review, the authors focus on the role of sphingolipids in the development and prevention of cardiac failure.
PMCID:4548923
PMID: 22999245
ISSN: 1551-7136
CID: 948482
Evaluation and treatment of hypertriglyceridemia: an Endocrine Society clinical practice guideline [Guideline]
Berglund, Lars; Brunzell, John D; Goldberg, Anne C; Goldberg, Ira J; Sacks, Frank; Murad, Mohammad Hassan; Stalenhoef, Anton F H
OBJECTIVE: The aim was to develop clinical practice guidelines on hypertriglyceridemia. PARTICIPANTS: The Task Force included a chair selected by The Endocrine Society Clinical Guidelines Subcommittee (CGS), five additional experts in the field, and a methodologist. The authors received no corporate funding or remuneration. CONSENSUS PROCESS: Consensus was guided by systematic reviews of evidence, e-mail discussion, conference calls, and one in-person meeting. The guidelines were reviewed and approved sequentially by The Endocrine Society's CGS and Clinical Affairs Core Committee, members responding to a web posting, and The Endocrine Society Council. At each stage, the Task Force incorporated changes in response to written comments. CONCLUSIONS: The Task Force recommends that the diagnosis of hypertriglyceridemia be based on fasting levels, that mild and moderate hypertriglyceridemia (triglycerides of 150-999 mg/dl) be diagnosed to aid in the evaluation of cardiovascular risk, and that severe and very severe hypertriglyceridemia (triglycerides of > 1000 mg/dl) be considered a risk for pancreatitis. The Task Force also recommends that patients with hypertriglyceridemia be evaluated for secondary causes of hyperlipidemia and that subjects with primary hypertriglyceridemia be evaluated for family history of dyslipidemia and cardiovascular disease. The Task Force recommends that the treatment goal in patients with moderate hypertriglyceridemia be a non-high-density lipoprotein cholesterol level in agreement with National Cholesterol Education Program Adult Treatment Panel guidelines. The initial treatment should be lifestyle therapy; a combination of diet modification and drug therapy may also be considered. In patients with severe or very severe hypertriglyceridemia, a fibrate should be used as a first-line agent.
PMCID:3431581
PMID: 22962670
ISSN: 0021-972x
CID: 948492