Searched for: in-biosketch:true
person:snudem01
Comparison of Fresh Cell Pellets and Cell Blocks for Genomic Profiling of Advanced Cancers in Pleural Effusion Specimens: Promising Preliminary Results from a Validation Study [Meeting Abstract]
Chen, Fei; Kim, Christine; Shen, Guomiao; Feng, Xiaojun; Jour, George; Cotzia, Paolo; Brandler, Tamar; Sun, Wei; Snuderl, Matija; Simsir, Aylin; Park, Kyung
ISI:000770360200230
ISSN: 0023-6837
CID: 5243162
A Comparison of the Classification of Pituitary Adenomas by Clinical, Immunohistochemical and Methylation Techniques [Meeting Abstract]
Belakhoua, Sarra; Tran, Ivy; Galbraith, Kristyn; Movahed-Ezazi, Misha; Serrano, Jonathan; Vasudevaraja, Varshini; Yang, Yiying; Golfinos, John; Pacione, Donato; Agrawal, Nidhi; Snuderl, Matija
ISI:000798368400184
ISSN: 0022-3069
CID: 5244342
Kidney Tumor Classifier Using Whole Genome Methylation Array [Meeting Abstract]
Park, Kyung; Serrano, Jonathan; Chen, Fei; Tran, Ivy; Vasudevaraja, Varshini; Hoskoppal, Deepthi; Deng, Fang-Ming; Snuderl, Matija
ISI:000770360201236
ISSN: 0023-6837
CID: 5243212
Integrated Molecular-Morphologic Meningioma Classification: A Multicenter Retrospective Analysis, Retrospectively and Prospectively Validated
Maas, Sybren L N; Stichel, Damian; Hielscher, Thomas; Sievers, Philipp; Berghoff, Anna S; Schrimpf, Daniel; Sill, Martin; Euskirchen, Philipp; Blume, Christina; Patel, Areeba; Dogan, Helin; Reuss, David; Dohmen, Hildegard; Stein, Marco; Reinhardt, Annekathrin; Suwala, Abigail K; Wefers, Annika K; Baumgarten, Peter; Ricklefs, Franz; Rushing, Elisabeth J; Bewerunge-Hudler, Melanie; Ketter, Ralf; Schittenhelm, Jens; Jaunmuktane, Zane; Leu, Severina; Greenway, Fay E A; Bridges, Leslie R; Jones, Timothy; Grady, Conor; Serrano, Jonathan; Golfinos, John; Sen, Chandra; Mawrin, Christian; Jungk, Christine; Hänggi, Daniel; Westphal, Manfred; Lamszus, Katrin; Etminan, Nima; Jungwirth, Gerhard; Herold-Mende, Christel; Unterberg, Andreas; Harter, Patrick N; Wirsching, Hans-Georg; Neidert, Marian C; Ratliff, Miriam; Platten, Michael; Snuderl, Matija; Aldape, Kenneth D; Brandner, Sebastian; Hench, Jürgen; Frank, Stephan; Pfister, Stefan M; Jones, David T W; Reifenberger, Guido; Acker, Till; Wick, Wolfgang; Weller, Michael; Preusser, Matthias; von Deimling, Andreas; Sahm, Felix
PURPOSE:), whereas no molecularly based stratification exists for the broad spectrum of patients with low- and intermediate-risk meningioma. METHODS:DNA methylation data and copy-number information were generated for 3,031 meningiomas (2,868 patients), and mutation data for 858 samples. DNA methylation subgroups, copy-number variations (CNVs), mutations, and WHO grading were analyzed. Prediction power for outcome was assessed in a retrospective cohort of 514 patients, validated on a retrospective cohort of 184, and on a prospective cohort of 287 multicenter cases. RESULTS:= .005). Besides the overall stratification advantage, the integrated score separates more precisely for risk of progression at the diagnostically challenging interface of WHO grade 1 and grade 2 tumors (hazard ratio 4.34 [2.48-7.57] and 3.34 [1.28-8.72] retrospective and prospective validation cohorts, respectively). CONCLUSION:Merging these layers of histologic and molecular data into an integrated, three-tiered score significantly improves the precision in meningioma stratification. Implementation into diagnostic routine informs clinical decision making for patients with meningioma on the basis of robust outcome prediction.
PMCID:8713596
PMID: 34618539
ISSN: 1527-7755
CID: 5103732
Functional Characterization of Brain Tumor-Initiating Cells and Establishment of GBM Preclinical Models that Incorporate Heterogeneity, Therapy, and Sex Differences
Garcia, Cesar A; Bhargav, Adip G; Brooks, Mieu; Suárez-Meade, Paola; Mondal, Sujan K; Zarco, Natanael; ReFaey, Karim; Jentoft, Mark; Middlebrooks, Erik H; Snuderl, Matija; Carrano, Anna; Guerrero-Cazares, Hugo; Schiapparelli, Paula; Sarabia-Estrada, Rachel; Quiñones-Hinojosa, Alfredo
Glioblastoma (GBM) is the most common primary brain cancer in adults where tumor cell heterogeneity and sex differences influence clinical outcomes. Here, we functionally characterize three male and three female patient-derived GBM cell lines, identify protumorigenic BTICs, and create novel male and female preclinical models of GBM. Cell lines were evaluated on the following features: proliferation, stemness, migration, tumorigenesis, clinical characteristics, and sensitivity to radiation, TMZ, rhTNFSF10 (rhTRAIL), and rhBMP4 All cell lines were classified as GBM according to epigenetic subtyping, were heterogenous and functionally distinct from one another, and re-capitulated features of the original patient tumor. In establishing male and female preclinical models, it was found that two male-derived GBM cell lines (QNS108 and QNS120) and one female-derived GBM cell line (QNS315) grew at a faster rate in female mice brains. One male-derived GBM cell line (QNS108) decreased survival in female mice in comparison with male mice. However, no survival differences were observed for mice injected with a female-derived cell line (QNS315). In summary, a panel of six GBM patient-derived cell lines were functionally characterized, and it was shown that BTIC lines can be used to construct sex-specific models with differential phenotypes for additional studies.
PMCID:8687628
PMID: 34465594
ISSN: 1538-8514
CID: 5088822
Comparison of solid tissue sequencing and liquid biopsy accuracy in identification of clinically relevant gene mutations and rearrangements in lung adenocarcinomas
Lin, Lawrence Hsu; Allison, Douglas H R; Feng, Yang; Jour, George; Park, Kyung; Zhou, Fang; Moreira, Andre L; Shen, Guomiao; Feng, Xiaojun; Sabari, Joshua; Velcheti, Vamsidhar; Snuderl, Matija; Cotzia, Paolo
Screening for therapeutic targets is standard of care in the management of advanced non-small cell lung cancer. However, most molecular assays utilize tumor tissue, which may not always be available. "Liquid biopsies" are plasma-based next generation sequencing (NGS) assays that use circulating tumor DNA to identify relevant targets. To compare the sensitivity, specificity, and accuracy of a plasma-based NGS assay to solid-tumor-based NGS we retrospectively analyzed sequencing results of 100 sequential patients with lung adenocarcinoma at our institution who had received concurrent testing with both a solid-tissue-based NGS assay and a commercially available plasma-based NGS assay. Patients represented both new diagnoses (79%) and disease progression on treatment (21%); the majority (83%) had stage IV disease. Tissue-NGS identified 74 clinically relevant mutations, including 52 therapeutic targets, a sensitivity of 94.8%, while plasma-NGS identified 41 clinically relevant mutations, a sensitivity of 52.6% (p < 0.001). Tissue-NGS showed significantly higher sensitivity and accuracy across multiple patient subgroups, both in newly diagnosed and treated patients, as well as in metastatic and nonmetastatic disease. Discrepant cases involved hotspot mutations and actionable fusions including those in EGFR, ALK, and NTRK1. In summary, tissue-NGS detects significantly more clinically relevant alterations and therapeutic targets compared to plasma-NGS, suggesting that tissue-NGS should be the preferred method for molecular testing of lung adenocarcinoma when tissue is available. Plasma-NGS can still play an important role when tissue testing is not possible. However, given its low sensitivity, a negative result should be confirmed with a tissue-based assay.
PMID: 34362997
ISSN: 1530-0285
CID: 4979862
Methylome Analysis of Rare Sinonasal Malignancies: Novel Venues for Clinical Applications
Mladkova, N; Dogan, S; Yaney, A; Snuderl, M; Palmer, J D; Gamez, M E; Bonomi, M; Prevedello, D; Raval, R; Chakravarti, A; Carrau, R; Blakaj, D M
PURPOSE/OBJECTIVE(S): Olfactory neuroblastoma (ONB) and sinonasal undifferentiated carcinoma (SNUC) are rare sinonasal cancers with distinct clinical courses. Methylomic differences between these entities have not been previously explored. The aims of this study were to compare genome-wide methylomes of ONB and SNUC, and to explore candidate tissue of origin of SNUC using a comparative methylomics approach. MATERIALS/METHODS: We included a total of 87 sinonasal malignancy samples. Genome-wide methylome data were obtained with an SNP-based human microarray for 71 ONB-like samples (44 "definitive" ONB samples, 27 ONB-resembling samples) and 10 IDH2-mutatnt SNUC samples. RNA sequencing data for a further 3 ONB and 3 SNUC samples were included. Methylomes were compared between ONB and SNUC samples and to publicly available methylation data for 195 tissue samples representing an array of tumors and normal tissues using R. Strict quality control was performed.
RESULT(S): A total of 41 ONB and 9 SNUC samples passed QC and were included in the final analysis. A total of 89,016 differentially methylated probes had adjusted P-value < 0.01, the majority (90.4%) of which were hypermethylated in SNUC and located predominantly in regulatory regions, likely reflecting IDH2 mutation. The remaining 9.6% were hypomethylated in SNUC samples and were commonly located in intergenic regions. Top differentially methylated regions were GATA3, IGF2, LSP1, NKX6-2 and UNCX. NKX6-2 and UNCX were not expressed in SNUC RNAseq data. Gene set enrichment analysis (GSEA) of differentially hypermethylated CpG-island associated probes with at least 2.5-fold-decrease in SNUC RNA-seq data showed enrichment of EZH2 targets, H3K27 bound genes consistent with previous GSEA in IDH2-mutat sarcomas, in addition to WNT pathway, olfactory transduction, lipid & carbohydrate metabolism and genes pertaining to the nervous system (P < 0.0001). On Pearson's correlation-based analysis, ONB clustered with neuronal samples while SNUC clustered with medulloblastoma (MB) and malignant peripheral nerve sheath tumor (MPNST). On separate correlation, SNUC clustered with T-cell lymphoma, MPNST and MB. On examination of the top 300 differentially methylated probes, SNUC again clustered with MPNST and MB and with a neural crest cluster. On deconvolution analysis, both ONB and SNUC samples showed a predominant T-cell presence, which was significantly higher in SNUC (P < 0.001).
CONCLUSION(S): ONB and SNUC possess distinct methylomes. PRC2 complex dysregulation may represent a key driver of a genome-wide repressive phenotype in IDH2-mutant SNUC samples leading to a dedifferentiated phenotype and may be a potential avenue for targeted therapies in the future. The presence of T-cell infiltration in both tumors represents a potential avenue for exploration of therapeutic checkpoint inhibition. Genome-wide methylomics suggests SNUC may be derived from neuronal tissue and we are currently involved in further transomic approaches to independently validate this hypothesis.
Copyright
EMBASE:636626413
ISSN: 1879-355x
CID: 5077782
Radiotherapy is Associated With Global Methylation Alterations in Patient Derived Glioblastoma Cell Lines
Modrek, A S; Ezhilarasan, R; Snuderl, M; Sulman, E P
PURPOSE/OBJECTIVE(S): Despite maximal surgical resection, radiotherapy, chemotherapy and re-treatment at re-occurrence, median overall survival time of glioblastoma (WHO grade IV, IDH wild-type) is estimated to be ~16 months. In glioma, DNA methylation states are the most predictive marker of overall survival and response to therapy. Our understanding of how epigenetic states, such as DNA methylation, are "mis-repaired" after DNA damage repair is scant, hampering our ability to understand how treatment associated DNA methylation alterations may drive tumor resistance and growth. MATERIALS/METHODS: Three different patient derived glioma stem cell (GSC) lines, in duplicates, were treated with 20 Gy in 10 fractions and allowed to recover prior to DNA methylation analysis with 850K methylation arrays. To analyze the methylation array data, we used RnBeads (version 2.4.0) and R (version 3.6.1) packages. We further focused our analysis to various genomic regions, including CpG islands, promoters, gene bodies and CTCF motifs to understand how methylation alterations may differ between these and other genomic contexts.
RESULT(S): We found differential methylation (pre-treatment vs. radiation treatment) changes among the genomic regions examined. Interestingly, we found differential methylation changes at CTCF motifs, which play important DNA-methylation dependent roles in gene expression and chromatin architecture regulation. Hierarchical clustering, PCA and MDS analysis amongst CpG islands, promoters, gene bodies and CTCF domains did not reveal strong inter-sample differences that segregated the samples on the basis of treatment status, suggesting radiation associated methylation alterations are context dependent.
CONCLUSION(S): Radiation treatment is associated with wide-spread alterations of DNA methylation states in this patient derived glioblastoma model. Such alterations may drive gene expression changes, or genomic architecture alterations, that lead to treatment resistance in the recurrent setting. AUTHOR DISCLOSURE: A.S. Modrek: None. R. Ezhilarasan: None. M. Snuderl: None. E.P. Sulman: None.
Copyright
EMBASE:636627289
ISSN: 1879-355x
CID: 5077772
PATZ1 fusions define a novel molecularly distinct neuroepithelial tumor entity with a broad histological spectrum
Alhalabi, Karam T; Stichel, Damian; Sievers, Philipp; Peterziel, Heike; Sommerkamp, Alexander C; Sturm, Dominik; Wittmann, Andrea; Sill, Martin; Jäger, Natalie; Beck, Pengbo; Pajtler, Kristian W; Snuderl, Matija; Jour, George; Delorenzo, Michael; Martin, Allison M; Levy, Adam; Dalvi, Nagma; Hansford, Jordan R; Gottardo, Nicholas G; Uro-Coste, Emmanuelle; Maurage, Claude-Alain; Godfraind, Catherine; Vandenbos, Fanny; Pietsch, Torsten; Kramm, Christof; Filippidou, Maria; Kattamis, Antonis; Jones, Chris; Øra, Ingrid; Mikkelsen, Torben Stamm; Zapotocky, Michal; Sumerauer, David; Scheie, David; McCabe, Martin; Wesseling, Pieter; Tops, Bastiaan B J; Kranendonk, Mariëtte E G; Karajannis, Matthias A; Bouvier, Nancy; Papaemmanuil, Elli; Dohmen, Hildegard; Acker, Till; von Hoff, Katja; Schmid, Simone; Miele, Evelina; Filipski, Katharina; Kitanovski, Lidija; Krskova, Lenka; Gojo, Johannes; Haberler, Christine; Alvaro, Frank; Ecker, Jonas; Selt, Florian; Milde, Till; Witt, Olaf; Oehme, Ina; Kool, Marcel; von Deimling, Andreas; Korshunov, Andrey; Pfister, Stefan M; Sahm, Felix; Jones, David T W
Large-scale molecular profiling studies in recent years have shown that central nervous system (CNS) tumors display a much greater heterogeneity in terms of molecularly distinct entities, cellular origins and genetic drivers than anticipated from histological assessment. DNA methylation profiling has emerged as a useful tool for robust tumor classification, providing new insights into these heterogeneous molecular classes. This is particularly true for rare CNS tumors with a broad morphological spectrum, which are not possible to assign as separate entities based on histological similarity alone. Here, we describe a molecularly distinct subset of predominantly pediatric CNS neoplasms (n = 60) that harbor PATZ1 fusions. The original histological diagnoses of these tumors covered a wide spectrum of tumor types and malignancy grades. While the single most common diagnosis was glioblastoma (GBM), clinical data of the PATZ1-fused tumors showed a better prognosis than typical GBM, despite frequent relapses. RNA sequencing revealed recurrent MN1:PATZ1 or EWSR1:PATZ1 fusions related to (often extensive) copy number variations on chromosome 22, where PATZ1 and the two fusion partners are located. These fusions have individually been reported in a number of glial/glioneuronal tumors, as well as extracranial sarcomas. We show here that they are more common than previously acknowledged, and together define a biologically distinct CNS tumor type with high expression of neural development markers such as PAX2, GATA2 and IGF2. Drug screening performed on the MN1:PATZ1 fusion-bearing KS-1 brain tumor cell line revealed preliminary candidates for further study. In summary, PATZ1 fusions define a molecular class of histologically polyphenotypic neuroepithelial tumors, which show an intermediate prognosis under current treatment regimens.
PMID: 34417833
ISSN: 1432-0533
CID: 5006432
Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors
Sievers, Philipp; Henneken, Sophie C; Blume, Christina; Sill, Martin; Schrimpf, Daniel; Stichel, Damian; Okonechnikov, Konstantin; Reuss, David E; Benzel, Julia; Maaß, Kendra K; Kool, Marcel; Sturm, Dominik; Zheng, Tuyu; Ghasemi, David R; Kohlhof-Meinecke, Patricia; Cruz, Ofelia; Suñol, Mariona; Lavarino, Cinzia; Ruf, Viktoria; Boldt, Henning B; Pagès, Mélanie; Pouget, Celso; Schweizer, Leonille; Kranendonk, Mariëtte E G; Akhtar, Noreen; Bunkowski, Stephanie; Stadelmann, Christine; Schüller, Ulrich; Mueller, Wolf C; Dohmen, Hildegard; Acker, Till; Harter, Patrick N; Mawrin, Christian; Beschorner, Rudi; Brandner, Sebastian; Snuderl, Matija; Abdullaev, Zied; Aldape, Kenneth; Gilbert, Mark R; Armstrong, Terri S; Ellison, David W; Capper, David; Ichimura, Koichi; Reifenberger, Guido; Grundy, Richard G; Jabado, Nada; Krskova, Lenka; Zapotocky, Michal; Vicha, Ales; Varlet, Pascale; Wesseling, Pieter; Rutkowski, Stefan; Korshunov, Andrey; Wick, Wolfgang; Pfister, Stefan M; Jones, David T W; von Deimling, Andreas; Pajtler, Kristian W; Sahm, Felix
Ependymomas encompass a heterogeneous group of central nervous system (CNS) neoplasms that occur along the entire neuroaxis. In recent years, extensive (epi-)genomic profiling efforts have identified several molecular groups of ependymoma that are characterized by distinct molecular alterations and/or patterns. Based on unsupervised visualization of a large cohort of genome-wide DNA methylation data, we identified a highly distinct group of pediatric-type tumors (n = 40) forming a cluster separate from all established CNS tumor types, of which a high proportion were histopathologically diagnosed as ependymoma. RNA sequencing revealed recurrent fusions involving the pleomorphic adenoma gene-like 1 (PLAGL1) gene in 19 of 20 of the samples analyzed, with the most common fusion being EWSR1:PLAGL1 (n = 13). Five tumors showed a PLAGL1:FOXO1 fusion and one a PLAGL1:EP300 fusion. High transcript levels of PLAGL1 were noted in these tumors, with concurrent overexpression of the imprinted genes H19 and IGF2, which are regulated by PLAGL1. Histopathological review of cases with sufficient material (n = 16) demonstrated a broad morphological spectrum of tumors with predominant ependymoma-like features. Immunohistochemically, tumors were GFAP positive and OLIG2- and SOX10 negative. In 3/16 of the cases, a dot-like positivity for EMA was detected. All tumors in our series were located in the supratentorial compartment. Median age of the patients at the time of diagnosis was 6.2 years. Median progression-free survival was 35 months (for 11 patients with data available). In summary, our findings suggest the existence of a novel group of supratentorial neuroepithelial tumors that are characterized by recurrent PLAGL1 fusions and enriched for pediatric patients.
PMID: 34355256
ISSN: 1432-0533
CID: 5006022