Try a new search

Format these results:

Searched for:

in-biosketch:true

person:fritzj02

Total Results:

240


CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons

Kalia, Vivek; Fritz, Benjamin; Johnson, Rory; Gilson, Wesley D; Raithel, Esther; Fritz, Jan
OBJECTIVES/OBJECTIVE:To test the hypothesis that a fourfold CAIPIRINHA accelerated, 10-min, high-resolution, isotropic 3D TSE MRI prototype protocol of the ankle derives equal or better quality than a 20-min 2D TSE standard protocol. METHODS:Following internal review board approval and informed consent, 3-Tesla MRI of the ankle was obtained in 24 asymptomatic subjects including 10-min 3D CAIPIRINHA SPACE TSE prototype and 20-min 2D TSE standard protocols. Outcome variables included image quality and visibility of anatomical structures using 5-point Likert scales. Non-parametric statistical testing was used. P values ≤0.001 were considered significant. RESULTS:Edge sharpness, contrast resolution, uniformity, noise, fat suppression and magic angle effects were without statistical difference on 2D and 3D TSE images (p > 0.035). Fluid was mildly brighter on intermediate-weighted 2D images (p < 0.001), whereas 3D images had substantially less partial volume, chemical shift and no pulsatile-flow artifacts (p < 0.001). Oblique and curved planar 3D images resulted in mildly-to-substantially improved visualization of joints, spring, bifurcate, syndesmotic, collateral and sinus tarsi ligaments, and tendons (p < 0.001, respectively). CONCLUSIONS:3D TSE MRI with CAIPIRINHA acceleration enables high-spatial resolution oblique and curved planar MRI of the ankle and visualization of ligaments, tendons and joints equally well or better than a more time-consuming anisotropic 2D TSE MRI. KEY POINTS/CONCLUSIONS:• High-resolution 3D TSE MRI improves visualization of ankle structures. • Limitations of current 3D TSE MRI include long scan times. • 3D CAIPIRINHA SPACE allows now a fourfold-accelerated data acquisition. • 3D CAIPIRINHA SPACE enables high-spatial-resolution ankle MRI within 10 min. • 10-min 3D CAIPIRINHA SPACE produces equal-or-better quality than 20-min 2D TSE.
PMID: 28116515
ISSN: 1432-1084
CID: 4161022

Simultaneous Multislice Accelerated Turbo Spin Echo Magnetic Resonance Imaging: Comparison and Combination With In-Plane Parallel Imaging Acceleration for High-Resolution Magnetic Resonance Imaging of the Knee

Fritz, Jan; Fritz, Benjamin; Zhang, Jialu; Thawait, Gaurav K; Joshi, Dharmdev H; Pan, Li; Wang, Dingxin
PURPOSE:We prospectively quantified the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of integrated parallel acquisition technique (PAT) and simultaneous multislice (SMS) acceleration and various combinations thereof, and we further compared two 4-fold-accelerated (PAT2-SMS2) high-resolution turbo spin echo (TSE) magnetic resonance imaging (MRI) protocols of the knee against a clinical 2-fold-accelerated (PAT2-SMS1) TSE standard. MATERIALS AND METHODS:Institutional review board approval was obtained, and all subjects gave informed consent. Fourteen knee MRI examinations were obtained (8 men, 6 women; mean age, 46 years; age range, 28-62 years) using a 3 T MRI system and a TSE pulse sequence prototype that allowed for the combination of PAT and SMS acceleration. Predicted whole-body specific absorption rates were recorded for all pulse sequences. For quantitative analysis, the difference method was used to calculate SNR and CNR analysis of 6 different TSE acceleration schemes (PAT2-SMS1, PAT3-SMS1, PAT1-SMS2, PAT1-SMS3, PAT2-SMS2, and PAT2-SMS3). For qualitative analysis, sagittal intermediate-weighted and axial fat-suppressed T2-weighted MR images were obtained with PAT2-SMS1 and PAT2-SMS2 acceleration schemes using similar parameters. One faster PAT2-SMS2 acceleration scheme with decreased repetition time and longer echo train was labeled with the addition SPEED for the purpose of this report. Two readers rated the data sets for image quality, structural visibility, and overall observer satisfaction using equidistant 5-point Likert scales. Readers additionally noted the presence of cartilage defects, meniscal tears, tendons and ligament tears, and bone marrow edema pattern. Friedman and Kruskal-Wallis tests were used. P values of less than 0.01 were considered significant. RESULTS:All pulse sequences were successfully executed and reconstructed inline. Whole-body specific absorption rates ranged between 1.4 and 3.9 W/kg for all acquisitions and remained within mandated limits. Quantitatively, mean SNR and CNR were significantly higher for SMS than those for PAT and similar for PAT2-SMS2 and PAT2-SMS1. Fluid was brightest on PAT2-SMS1, whereas noise, edge sharpness, contrast resolution, and fat suppression were similar on PAT2-SMS1 and SMS2-PAT2 and mildly inferior on PAT2-SMS2 SPEED. Articular cartilage received mildly higher ratings on PAT2-SMS1, whereas visibility of menisci was mildly inferior on PAT2-SMS2 SPEED. Observer preferences were similarly high for PAT2-SMS1 and PAT2-SMS2 and mildly inferior for the faster PAT2-SMS2 SPEED images. Four cartilage defects and 2 meniscal tears were seen by both readers on all sequences. CONCLUSIONS:We demonstrate the signal preservation capabilities of SMS over PAT acceleration, which allow for similar SNR and CNR of 4-fold PAT2-SMS2 and 2-fold PAT2-SMS1 acceleration. Four-fold-accelerated TSE through the combination of PAT2 and SMS2 enables approximately 50% shorter acquisition times compared with regular PAT2 acceleration, similar quantitative and qualitative image quality, and holds promise for a meaningful increase of the efficiency of clinical 2-dimensional MRI of the knee.
PMID: 28430716
ISSN: 1536-0210
CID: 4161082

Improved MDCT monitoring of pelvic myeloma bone disease through the use of a novel longitudinal bone subtraction post-processing algorithm

Horger, Marius; Thaiss, Wolfgang M; Ditt, Hendrik; Weisel, Katja; Fritz, Jan; Nikolaou, Konstantin; Liao, Shu; Kloth, Christopher
PURPOSE/OBJECTIVE:To evaluate the diagnostic performance of a novel CT post-processing software that generates subtraction maps of baseline and follow-up CT examinations in the course of myeloma bone lesions. MATERIALS AND METHODS/METHODS:This study included 61 consecutive myeloma patients who underwent repeated whole-body reduced-dose MDCT at our institution between November 2013 and June 2015. CT subtraction maps classified a progressive disease (PD) vs. stable disease (SD)/remission. Bone subtraction maps (BSMs) only and in combination with 1-mm (BSM+) source images were compared with 5-mm axial/MPR scans. RESULTS:Haematological response categories at follow-up were: complete remission (n = 9), very good partial remission (n = 2), partial remission (n = 17) and SDh (n = 19) vs. PDh (n = 14). Five-millimetre CT scan yielded PD (n = 14) and SD/remission (n = 47) whereas bone subtraction + 1-mm axial scans (BSM+) reading resulted in PD (n = 18) and SD/remission (n = 43). Sensitivity/ specificity/accuracy for 5-mm/1-mm/BSM(alone)/BSM + in "lesion-by-lesion" reading was 89.4 %/98.9 %/98.3 %/ 99.5 %; 69.1 %/96.9 %/72 %/92.1 % and 83.8 %/98.4 %/92.1 %/98.3 %, respectively. The use of BSM+ resulted in a change of response classification in 9.8 % patients (n = 6) from SD to PD. CONCLUSION/CONCLUSIONS:BSM reading is more accurate for monitoring myeloma compared to axial scans whereas BSM+ yields similar results with 1-mm reading (gold standard) but by significantly reduced reading time. KEY POINTS/CONCLUSIONS:• CT evaluation of myeloma bone disease using a longitudinal bone subtraction post-processing algorithm. • Bone subtraction post-processing algorithm is more accurate for assessment of therapy. • Bone subtraction allowed improved and more efficient detection of myeloma bone lesions. • Post-processing tool demonstrating a change in response classification in 9.8 % patients (all showing PD). • Reading time could be substantially shortened as compared to regular CT assessment.
PMID: 27882427
ISSN: 1432-1084
CID: 4160992

MRI-guided cryoablation of the posterior femoral cutaneous nerve for the treatment of neuropathy-mediated sitting pain [Case Report]

Joshi, Dharmdev H; Thawait, Gaurav K; Del Grande, Filippo; Fritz, Jan
Neuropathy of the posterior femoral cutaneous nerve may manifest as pain and paresthesia in the skin over the inferior buttocks, posterior thigh, and popliteal region. Current treatment options include physical and oral pain therapy, perineural injections, and surgical neurectomy. Perineural steroid injections may provide short-term pain relief; however, to our knowledge, there is currently no minimally invasive denervation procedure for sustained pain relief that could serve as an alternative to surgical neurectomy. Percutaneous cryoablation of nerves is a minimally invasive technique that induces a sustained nerve conduction block through temporary freezing of the neural layers. It can result in long-lasting pain relief, but has not been described for the treatment of neuropathy-mediated PFCN pain. We report a technique of MR-guided cryoablation of the posterior femoral cutaneous nerve resulting in successful treatment of PFCN-mediated sitting pain. Cryoablation of the posterior femoral cutaneous nerve seems a promising, minimally invasive treatment option that deserves further investigation.
PMID: 28299433
ISSN: 1432-2161
CID: 4161042

High-resolution metal artifact reduction MR imaging of the lumbosacral plexus in patients with metallic implants

Ahlawat, Shivani; Stern, Steven E; Belzberg, Allan J; Fritz, Jan
OBJECTIVE:To assess the quality and accuracy of metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) for the diagnosis of lumbosacral neuropathies in patients with metallic implants in the pelvis. MATERIALS AND METHODS/METHODS:Twenty-two subjects with lumbosacral neuropathy following pelvic instrumentation underwent 1.5-T MARS MRI including optimized axial intermediate-weighted and STIR turbo spin echo sequences extending from L5 to the ischial tuberosity. Two readers graded the visibility of the lumbosacral trunk, sciatic, femoral, lateral femoral cutaneous, and obturator nerves and the nerve signal intensity of nerve, architecture, caliber, course, continuity, and skeletal muscle denervation. Clinical examination and electrodiagnostic studies were used as the standard of reference. Descriptive, agreement, and diagnostic performance statistics were applied. RESULTS:Lumbosacral plexus visibility on MARS MRI was good (4) or very good (3) in 92% of cases with 81% exact agreement and a Kendall's W coefficient of 0.811. The obturator nerve at the obturator foramen and the sciatic nerve posterior to the acetabulum had the lowest visibility, with good or very good ratings in only 61% and 77% of cases respectively. The reader agreement for nerve abnormalities on MARS MRI was excellent, ranging from 95.5 to 100%. MARS MRI achieved a sensitivity of 86%, specificity of 67%, positive predictive value of 95%, and negative predictive value of 40%, and accuracy of 83% for the detection of neuropathy. CONCLUSION/CONCLUSIONS:MARS MRI yields high image quality and diagnostic accuracy for the assessment of lumbosacral neuropathies in patients with metallic implants of the pelvis and hips.
PMID: 28357568
ISSN: 1432-2161
CID: 4161062

Metal Artifact Reduction Magnetic Resonance Imaging Around Arthroplasty Implants: The Negative Effect of Long Echo Trains on the Implant-Related Artifact

Kumar, Neil M; de Cesar Netto, Cesar; Schon, Lew C; Fritz, Jan
OBJECTIVES:Long echo train length (ETL) is an often recommended but unproven technique to decrease metal artifacts on magnetic resonance imaging (MRI) scans. Therefore, we quantitatively and qualitatively assessed the effects of ETL on metal artifact on MRI scans using a cobalt-chromium-containing arthroplasty implant system. MATERIALS AND METHODS:Using a total ankle arthroplasty system implanted into a human cadaver ankle and a clinical 1.5 T MRI system, turbo spin echo (TSE) pulse sequences were acquired with ETL ranging from 3 to 23 and receiver bandwidth (BW) from 100 to 750 Hz/pixel, whereas effective echo time and spatial resolution were controlled. A compressed sensing slice encoding for metal artifact correction TSE prototype pulse sequence was used as reference standard. End points included the total implant-related artifact area and implant-related signal void areas. Two raters evaluated the overall image quality and preference across varying BW and ETL. Two-factor analysis of variance, Friedman test, Kruskal-Wallis test, and Pearson correlation were used. P values of less than 0.05 were considered statistically significant. RESULTS:The total implant-related artifact area ranged from 0.119 for compressed sensing slice encoding for metal artifact correction (BW, 600 Hz/pixel; ETL, 3) to 0.265 for TSE (BW, 100 Hz/pixel; ETL, 23). Longer ETL significantly increases the total implant-related artifact area (P = 0.0004), whereas it decreased with increasing BW (P < 0.0001). Implant-related signal void areas were not significantly affected by larger echo train length, but reduced with higher BW (P < 0.0001). Readers had a significant preference for images with high BW and short ETL (P < 0.0001). CONCLUSIONS:High receiver BW is the most effective parameter for reduction of arthroplasty implant-induced metal artifact on MRI scans, whereas in contradiction to prevalent notions, long echo trains fail to reduce implant-related metal artifacts, but in fact cause degradation of image quality around the implant with resultant larger appearing total metal artifacts.
PMID: 28079703
ISSN: 1536-0210
CID: 3802922

Automated "Bone Subtraction" Image Analysis Software Package for Improved and Faster CT Monitoring of Longitudinal Spine Involvement in Patients with Multiple Myeloma

Horger, Marius; Ditt, Hendrick; Liao, Shu; Weisel, Katja; Fritz, Jan; Thaiss, Wolfgang M; Kaufmann, Sascha; Nikolaou, Konstantin; Kloth, Christopher
RATIONALE AND OBJECTIVES:The study aimed to assess the diagnostic benefit of a novel computed tomography (CT) post-processing software generating subtraction maps of longitudinal non-enhanced CT examinations for monitoring the course of myeloma bone disease in the spine. MATERIALS AND METHODS:The local institutional review board approved the retrospective data evaluation. Included were 82 consecutive myeloma patients (46 male; mean age, 65.08 ± 9.76) who underwent 188 repeated whole-body reduced-dose Multislice Detector Computed Tomography (MDCT) at our institution between December 2013 and January 2016. Lytic bone lesions were categorized as new or enlarging versus stable. Bone subtraction maps were read in combination with corresponding 1-mm source images comparing results to those of standard image reading of 5-mm axial and 2-mm multiplanar reformat reconstructions (MPR) scans and hematologic markers, and classified as either progressive disease (PD) or stable disease (SD or remission). The standard of reference was 1-mm axial CT image reading + hematologic response both confirmed at follow-up. For statistical purposes, we subgrouped the hematologic response categories similarly to those applied for CT imaging (progression vs stable/response). RESULTS:According to the standard of reference, 16 patients experienced PD and 66 SD at follow-up. Th sensitivity, specificity, and accuracy for axial 5 mm + 2 mm MPR image versus bone subtraction maps in a "lesion-by-lesion" reading were 97.6%, 92.3%, and 97.2% versus 97.8%, 96.7%, and 97.7%, respectively. The use of bone subtraction maps resulted in a change of response classification in 9.7% of the patients (n = 8) versus 5 mm + 2 mm MPR image reading from SD to PD. Bone sclerosis lesions were detected in 52 out of 82 patients (63.4%). The reading time was significantly lower with the software bone subtraction compared to standard reading (P < 0.01) and 1-mm image reading (P < 0.001). CONCLUSION:Accuracy of bone subtraction maps reading for monitoring multiple myeloma is slightly increased over that of conventional axial + MPR image reading and significantly speeds up the reading time.
PMID: 28256439
ISSN: 1878-4046
CID: 4161032

1.5 T augmented reality navigated interventional MRI: paravertebral sympathetic plexus injections

Marker, David R; U Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J; Fichtinger, Gabor; Iordachita, Iulian I; Carrino, John A; Fritz, Jan
PURPOSE/OBJECTIVE:The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. METHODS:A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. RESULTS:Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1-5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. CONCLUSION/CONCLUSIONS:1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus.
PMCID:5411005
PMID: 28420598
ISSN: 1305-3612
CID: 4161072

Use of magnetic resonance imaging-guided biopsy of a vertebral body mass to diagnose osteosarcoma in a Rottweiler [Case Report]

Krimins, Rebecca A; Fritz, Jan; Gainsburg, Larry A; Gavin, Patrick R; Ihms, Elizabeth A; Huso, David L; Kraitchman, Dara L
CASE DESCRIPTION A 9-year-old spayed female Rottweiler with hind limb ataxia was examined because of anorexia and an acute onset of hind limb paresis. CLINICAL FINDINGS Neurologic evaluation revealed hind limb ataxia and symmetric paraparesis with bilaterally abnormal hind limb postural reactions including hopping, hemiwalking, hemistanding, and delayed proprioception, which were suggestive of a lesion somewhere in the T3-L3 segment of the spinal cord. Thoracolumbar radiography revealed an abnormal radiopacity suggestive of a mass at T11. Two 3.5-cm-long osseous core biopsy specimens of the mass were obtained by MRI guidance. Histologic appearance of the specimens was consistent with osteosarcoma. TREATMENT AND OUTCOME The owners of the dog declined further treatment owing to a poor prognosis. The dog was euthanized within 12 months after diagnosis because of a declining quality of life. CLINICAL RELEVANCE The acquisition of biopsy specimens by MRI guidance is an emerging technique in veterinary medicine. As evidenced by the dog of this report, MRI-guided biopsy can be used to safely obtain diagnostic biopsy specimens from tissues at anatomic locations that are difficult to access. This technique can potentially be used to facilitate early diagnosis and treatment of disease, which could improve patient outcome. The MRI guidance technique described may also be useful for local administration of chemotherapeutics or radiofrequency ablation or cryoablation of various neoplasms of the vertebral column.
PMID: 28306496
ISSN: 1943-569x
CID: 4161052

Improved Delineation of Pulmonary Embolism and Venous Thrombosis Through Frequency Selective Nonlinear Blending in Computed Tomography

Bongers, Malte Niklas; Bier, Georg; Kloth, Christopher; Schabel, Christoph; Fritz, Jan; Nikolaou, Konstantin; Horger, Marius
OBJECTIVE:The aim of this study was to test the hypothesis that a novel frequency selective nonlinear blending (NLB) algorithm increases the delineation of pulmonary embolism and venous thrombosis in portal-venous phase whole-body staging computed tomography (CT). MATERIALS AND METHODS:A cohort of 67 patients with incidental pulmonary embolism and/or venous thrombosis in contrast-enhanced oncological staging CT were retrospectively selected. Computed tomography data sets were acquired 65 to 90 seconds after intravenous iodine contrast administration using state-of-the-art multi-detector CT scanners. A novel frequency selective NLB postprocessing technique was applied to reconstructed standard CT images. Two readers determined the most suitable settings to increase the delineation of pulmonary embolism and venous thrombosis. Outcome measure included region of interest and contrast-to-noise ratio (CNR) analyses, image noise, overall image quality, subjective delineation, as well as number and size of emboli and thrombi. Statistical testing included quantitative comparisons of Hounsfield units of thrombus and vessel, image noise and related CNR values and subjective image analyses of image noise, image quality and thrombus delineation, number and size in standard, and NLB images. RESULTS:Using frequency selective NLB settings with a center of 100 HU, delta of 40 HU, and a slope of 5, CNR values of pulmonary embolism (StandardCNR, 10 [6, 16]; NLBCNR, 22 [15, 30]; P < 0.001) and venous thrombosis (StandardCNR, 8 [5, 15]; NLBCNR, 12 [7, 19]; P = 0.0007) increased. Mean vascular enhancement using NLB was significantly higher than in standard images for pulmonary arteries (Standard, 138 [118, 191] HU; NLB, 269 [176, 329] HU; P < 0.0001) and veins (Standard, 120 [103, 162] HU; NLB, 169 [132, 217] HU; P < 0.0001), respectively. Image noise was not significantly different between standard and NLB images (P = 0.64-0.88). There was substantial to almost perfect interrater agreement as well as a significant increase of overall image quality (P < 0.004) and subjective delineation of the thrombotic material (P < 0.0001) in both subgroups. Nonlinear blending images revealed 8 additional segmental and 13 subsegmental emboli. Thrombus sizes were not significantly different, but subjective accuracy of the measurement could be significantly increased using NLB (P = 0.03). CONCLUSIONS:Postprocessing of standard whole-body staging CT images with frequency selective NLB improves image quality and the delineation of pulmonary embolism and venous thrombosis.
PMID: 27861205
ISSN: 1536-0210
CID: 4160982