Searched for: in-biosketch:true
person:fritzj02
Three-Dimensional CAIPIRINHA SPACE TSE for 5-Minute High-Resolution MRI of the Knee
Fritz, Jan; Fritz, Benjamin; Thawait, Gaurav G; Meyer, Heiko; Gilson, Wesley D; Raithel, Esther
OBJECTIVE:The aim of this study was to prospectively test the hypothesis that a 2-dimensional (2D) CAIPIRINHA (controlled aliasing in parallel imaging results in higher acceleration) sampling pattern facilitates 5-minute high spatial resolution 3-dimensional (3D) sampling perfection with application optimized contrast using different flip angle evolutions (SPACE) magnetic resonance imaging (MRI) of the knee with image quality similar or better than current 2D turbo spin echo (TSE) and 3D SPACE standards. MATERIALS AND METHODS:The study was approved by our institutional review board. Twenty asymptomatic subjects (12 men, 8 women; mean age, 42 years; age range, 24-65 years) underwent 3 T MRI of the knee. A 4-fold accelerated 3D SPACE TSE prototype with 2D CAIPIRINHA sampling pattern and 5-minute acquisition time was compared with commercially available 2-fold and 4-fold accelerated 3D SPACE and 2D TSE pulse sequences with acquisition times of 11 minutes and 15 seconds, 6 minutes and 30 seconds, as well as 9 minutes and 48 seconds, respectively. Outcome variables included image quality, anatomic visibility, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Statistical analysis included Friedman, repeated measures analysis of variances, and Cohen's weighted κ tests. Bonferroni-corrected P values of 0.005 and less were considered statistically significant. RESULTS:Overall, image quality, visibility of anatomic structures, SNR, and CNR of 3D CAIPIRINHA SPACE were statistically similar to 2-fold accelerated 3D SPACE and significantly better than 4-fold accelerated 3D SPACE, which exhibited degrading parallel imaging artifacts. Compared with 2.5-mm 2D TSE images, 0.5-mm 3D CAIPIRINHA SPACE images showed statistically similar good edge sharpness and very good contrast resolution, and significantly less partial volume as well as absent chemical shift and pulsatile flow artifacts. Visibility of menisci, anterior cruciate ligament, posterior cruciate ligament, medial collateral ligament, and lateral collateral ligament was good to very good on 0.5-mm 3D CAIPIRINHA SPACE images as compared with good on 2.5-mm 2D TSE image (P < 0.005). The SNR of fat, fluid, and cartilage as well as CNR between cartilage, fluid, fat, posterior cruciate ligament, and menisci were minimally higher on 2.5-mm 2D TSE image (P < 0.005). Image quality, visibility of anatomic structures, SNR, and CNR of 2.5-mm 3D CAIPIRINHA SPACE and 2.5-mm 2D TSE images were good to very good without significant differences. CONCLUSIONS:Three-dimensional SPACE with 2D CAIPIRINHA sampling pattern enables high-quality 3D TSE MRI of the knee at an acquisition time of 5 minutes and image quality, visibility of anatomic structures, SNR, and CNR similar to conventional 3D SPACE and 2D TSE, both of which require approximately 10-minute acquisition times.
PMID: 27187045
ISSN: 1536-0210
CID: 4160932
Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC
Fritz, Jan; Fritz, Benjamin; Thawait, Gaurav K; Raithel, Esther; Gilson, Wesley D; Nittka, Mathias; Mont, Michael A
OBJECTIVE:Compressed sensing (CS) acceleration has been theorized for slice encoding for metal artifact correction (SEMAC), but has not been shown to be feasible. Therefore, we tested the hypothesis that CS-SEMAC is feasible for MRI of metal-on-metal hip resurfacing implants. MATERIALS AND METHODS/METHODS:Following prospective institutional review board approval, 22 subjects with metal-on-metal hip resurfacing implants underwent 1.5 T MRI. We compared CS-SEMAC prototype, high-bandwidth TSE, and SEMAC sequences with acquisition times of 4-5, 4-5 and 10-12 min, respectively. Outcome measures included bone-implant interfaces, image quality, periprosthetic structures, artifact size, and signal- and contrast-to-noise ratios (SNR and CNR). Using Friedman, repeated measures analysis of variances, and Cohen's weighted kappa tests, Bonferroni-corrected p-values of 0.005 and less were considered statistically significant. RESULTS:There was no statistical difference of outcomes measures of SEMAC and CS-SEMAC images. Visibility of implant-bone interfaces and pseudocapsule as well as fat suppression and metal reduction were "adequate" to "good" on CS-SEMAC and "non-diagnostic" to "adequate" on high-BW TSE (p < 0.001, respectively). SEMAC and CS-SEMAC showed mild blur and ripple artifacts. The metal artifact size was 63 % larger for high-BW TSE as compared to SEMAC and CS-SEMAC (p < 0.0001, respectively). CNRs were sufficiently high and statistically similar, with the exception of CNR of fluid and muscle and CNR of fluid and tendon, which were higher on intermediate-weighted high-BW TSE (p < 0.005, respectively). CONCLUSION/CONCLUSIONS:Compressed sensing acceleration enables the time-neutral use of SEMAC for MRI of metal-on-metal hip resurfacing implants when compared to high-BW TSE and image quality similar to conventional SEMAC.
PMID: 27497594
ISSN: 1432-2161
CID: 4160942
Compressed Sensing SEMAC: 8-fold Accelerated High Resolution Metal Artifact Reduction MRI of Cobalt-Chromium Knee Arthroplasty Implants
Fritz, Jan; Ahlawat, Shivani; Demehri, Shadpour; Thawait, Gaurav K; Raithel, Esther; Gilson, Wesley D; Nittka, Mathias
OBJECTIVE:The aim of this study was to prospectively test the hypothesis that a compressed sensing-based slice encoding for metal artifact correction (SEMAC) turbo spin echo (TSE) pulse sequence prototype facilitates high-resolution metal artifact reduction magnetic resonance imaging (MRI) of cobalt-chromium knee arthroplasty implants within acquisition times of less than 5 minutes, thereby yielding better image quality than high-bandwidth (BW) TSE of similar length and similar image quality than lengthier SEMAC standard of reference pulse sequences. MATERIALS AND METHODS:This prospective study was approved by our institutional review board. Twenty asymptomatic subjects (12 men, 8 women; mean age, 56 years; age range, 44-82 years) with total knee arthroplasty implants underwent MRI of the knee using a commercially available, clinical 1.5 T MRI system. Two compressed sensing-accelerated SEMAC prototype pulse sequences with 8-fold undersampling and acquisition times of approximately 5 minutes each were compared with commercially available high-BW and SEMAC pulse sequences with acquisition times of approximately 5 minutes and 11 minutes, respectively. For each pulse sequence type, sagittal intermediate-weighted (TR, 3750-4120 milliseconds; TE, 26-28 milliseconds; voxel size, 0.5 × 0.5 × 3 mm) and short tau inversion recovery (TR, 4010 milliseconds; TE, 5.2-7.5 milliseconds; voxel size, 0.8 × 0.8 × 4 mm) were acquired. Outcome variables included image quality, display of the bone-implant interfaces and pertinent knee structures, artifact size, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Statistical analysis included Friedman, repeated measures analysis of variances, and Cohen weighted k tests. Bonferroni-corrected P values of 0.005 and less were considered statistically significant. RESULTS:Image quality, bone-implant interfaces, anatomic structures, artifact size, SNR, and CNR parameters were statistically similar between the compressed sensing-accelerated SEMAC prototype and SEMAC commercial pulse sequences. There was mild blur on images of both SEMAC sequences when compared with high-BW images (P < 0.001), which however did not impair the assessment of knee structures. Metal artifact reduction and visibility of central knee structures and bone-implant interfaces were good to very good and significantly better on both types of SEMAC than on high-BW images (P < 0.004). All 3 pulse sequences showed peripheral structures similarly well. The implant artifact size was 46% to 51% larger on high-BW images when compared with both types of SEMAC images (P < 0.0001). Signal-to-noise ratios and CNRs of fat tissue, tendon tissue, muscle tissue, and fluid were statistically similar on intermediate-weighted MR images of all 3 pulse sequence types. On short tau inversion recovery images, the SNRs of tendon tissue and the CNRs of fat and fluid, fluid and muscle, as well as fluid and tendon were significantly higher on SEMAC and compressed sensing SEMAC images (P < 0.005, respectively). CONCLUSIONS:We accept the hypothesis that prospective compressed sensing acceleration of SEMAC is feasible for high-quality metal artifact reduction MRI of cobalt-chromium knee arthroplasty implants in less than 5 minutes and yields better quality than high-BW TSE and similarly high quality than lengthier SEMAC pulse sequences.
PMID: 27518214
ISSN: 1536-0210
CID: 4160952
Six-Fold Acceleration of High-Spatial Resolution 3D SPACE MRI of the Knee Through Incoherent k-Space Undersampling and Iterative Reconstruction-First Experience
Fritz, Jan; Raithel, Esther; Thawait, Gaurav K; Gilson, Wesley; Papp, Derek F
PURPOSE:The aim of this study was to prospectively test the hypothesis that 6-fold acceleration of a 3-dimensional (3D) turbo spin echo (TSE) magnetic resonance imaging (MRI) pulse sequence with k-space undersampling and iterative reconstruction is feasible for fast high spatial resolution MRI of the knee, while yielding similar image quality and diagnostic performance when compared with a conventional 2-dimensional (2D) TSE MRI standard. MATERIALS AND METHODS:The study was approved by the institutional review board. A 10-minute isotropic 3D TSE knee protocol consisting of accelerated intermediate-weighted (repetition time, 900 milliseconds; echo time, 29 milliseconds; voxel size, 0.5 × 0.5 × 0.5 mm; acquisition time, 4:45 minutes) and fat-saturated T2-weighted (repetition time, 900 milliseconds; echo time, 92 milliseconds; voxel size, 0.5 × 0.5 × 0.5 mm; acquisition time, 5:10 minutes) SPACE (sampling perfection with application optimized contrast using different flip angle evolutions) sequence prototypes was compared against a 20-minute 2D TSE standard protocol. The accelerated SPACE sequences were equipped with an optional variable-density poisson-disc pattern as an undersampling mask. An undersampling factor of 0.17 was chosen (6-fold acceleration compared with an acquisition with full sampling). An iterative, sensitivity encoding-type reconstruction with L1 norm-based regularization term was used. The study was performed on a 3 T MRI system using a 15-channel transmit/receive knee coil. The study groups included 15 asymptomatic volunteers and 15 patient volunteers. Quantitative and qualitative assessments were performed by 2 observers. Outcome variables included signal and contrast-to-noise ratio, image quality, and diagnostic accuracy. Qualitative and quantitative measurements were statistically analyzed using nonparametric tests. P values of less than 0.01 were considered significant. RESULTS:The signal-to-noise ratios of 2D and 3D MRI were similar with the exception of fluid, which was brighter on 2D MRI. Relevant contrast-to-noise ratios of 2D MRI were higher than 3D MRI; however, observer ratings for satisfaction, image quality, and visibility of anatomic structures were similar for 2D and 3D MRI. There was moderate to excellent interobserver (κ = 0.54-1.00) and intermethod (κ = 0.54-1.00) agreement for assessing menisci, cartilage, ligaments, cartilage, and bone. Two-dimensional and 3D MRI had similar sensitivity (100%/100%, respectively) and specificity (87%/75%, respectively) for detecting 9 meniscal tears (P = 1.00). CONCLUSIONS:We demonstrate the successful clinical implementation of 3D TSE MRI with incoherent k-space undersampling and iterative reconstruction for 6-fold accelerated high spatial resolution isotropic 3D MRI data acquisition. Our preliminary assessments suggest similar image quality and diagnostic performance of a comprehensive 10-minute 3D TSE MRI prototype protocol and 20-minute TSE MRI standard protocol.
PMID: 26685106
ISSN: 1536-0210
CID: 4160892
MR-guided perineural injection of the ganglion impar: technical considerations and feasibility
Marker, David R; U-Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J; Fichtinger, Gabor; Iordachita, Iulian I; Carrino, John A; Fritz, Jan
OBJECTIVE:Perineural ganglion impar injections are used in the management of pelvic pain syndromes; however, there is no consensus regarding the optimal image guidance. Magnetic resonance imaging (MRI) provides high soft tissue contrast and the potential to directly visualize and target the ganglion. The purpose of this study was to assess the feasibility of MR-guided percutaneous perineural ganglion impar injections. MATERIALS AND METHODS/METHODS:Six MR-guided ganglion impar injections were performed in six human cadavers. Procedures were performed with a clinical 1.5-Tesla MRI system through a far lateral transgluteus approach. Ganglion impar visibility, distance from the sacrococcygeal joint, number of intermittent MRI control steps required to place the needle, target error between the intended and final needle tip location, inadvertent punctures of non-targeted vulnerable structures, injectant distribution, and procedure time were determined. RESULTS:The ganglion impar was seen on MRI in 4/6 (66 %) of cases and located 0.8 mm cephalad to 16.3 mm caudad (average 1.2 mm caudad) to the midpoint of the sacrococcygeal joint. Needle placement required an average of three MRI control steps (range, 2-6). The average target error was 2.2 ± 2.1 mm. In 6/6 cases (100 %), there was appropriate periganglionic distribution and filling of the presacrococcygeal space. No punctures of non-targeted structures occurred. The median procedure time was 20 min (range, 12-29 min). CONCLUSION/CONCLUSIONS:Interventional MRI can visualize and directly target the ganglion impar for accurate needle placement and successful periganglionic injection with the additional benefit of no ionizing radiation exposure to patient and staff. Our results support clinical evaluation.
PMID: 26791162
ISSN: 1432-2161
CID: 4160912
Multidetector computed tomography in the evaluation of hereditary multiple exostoses
Kwee, Robert M; Fayad, Laura M; Fishman, Elliot K; Fritz, Jan
Hereditary multiple exostoses (HME) is an autosomal dominant disorder characterized by the formation of multiple osteochondromas. Because of its superior soft tissue contrast and absence of ionizing radiation, magnetic resonance imaging is the first choice imaging technique for the evaluation of complex lesions and complications related to HME. However, multidetector computed tomography (MDCT) also can be of value in the evaluation of patients with HME, which is reviewed in this article. Topics outlined are low-dose MDCT technique, 3-dimensional visualization techniques, typical MDCT appearances, differential diagnostic considerations, and the usefulness of MDCT in the assessment of emergent and non-emergent complications related to HME, among which spinal cord compression, pneumothorax and hematothorax, pseudoaneurysms, fractures, growth disturbances, chondrosarcoma transformation, and muscular and peripheral nerve involvement.
PMID: 26781144
ISSN: 1872-7727
CID: 4160902
Dual-Energy Computed Tomography of the Knee, Ankle, and Foot: Noninvasive Diagnosis of Gout and Quantification of Monosodium Urate in Tendons and Ligaments
Fritz, Jan; Henes, Joerg C; Fuld, Matthew K; Fishman, Elliot K; Horger, Marius S
Gout is a true crystal deposition arthropathy caused by the precipitation of monosodium urate into joints and periarticular soft tissues. It is the most common inflammatory arthropathy in men and women of older age with a male-to-female ratio of 3 to 8:1. The disease may progress from asymptomatic hyperuricemia through symptomatic acute gout attacks with asymptomatic periods into chronic symptomatic tophaceous gout. Although invasive arthrocentesis and demonstration of monosodium urate crystals on polarized light microscopy is definitive for the diagnosis of gout, dual-energy computed tomography (CT) allows for noninvasive visualization and reproducible volume quantification of monosodium urate crystals. Based on the high diagnostic performance, dual-energy CT has been included in the 2015 American College of Rheumatology/European League Against Rheumatism Collaborative Initiative Classification Criteria for Gout. Increasing evidence indicates the usefulness of dual-energy CT to guide the management of patients with suspected gout and monitor the effectiveness of urate-lowering medical therapy.
PMID: 27077593
ISSN: 1098-898x
CID: 4160922
3-Tesla High-Field Magnetic Resonance Neurography for Guiding Nerve Blocks and Its Role in Pain Management
Fritz, Jan; Dellon, Arnold Lee; Williams, Eric H; Belzberg, Allan J; Carrino, John A
Interventional magnetic resonance (MR) neurography is a minimally invasive technique that affords targeting of small nerves in challenging areas of the human body for highly accurate nerve blocks and perineural injections. This cross-sectional technique uniquely combines high tissue contrast and high-spatial-resolution anatomic detail, which enables the precise identification and selective targeting of peripheral nerves, accurate needle guidance and navigation of the needle tip within the immediate vicinity of a nerve, as well as direct visualization of the injected drug for the assessment of appropriate drug distribution and documentation of the absence of spread to confounding nearby nerves.
PMID: 26499273
ISSN: 1557-9786
CID: 4160882
MR Imaging of Knee Arthroplasty Implants
Fritz, Jan; Lurie, Brett; Potter, Hollis G
Primary total knee arthroplasty is a highly effective treatment that relieves pain and improves joint function in a large percentage of patients. Despite an initially satisfactory surgical outcome, pain, dysfunction, and implant failure can occur over time. Identifying the etiology of complications is vital for appropriate management and proper timing of revision. Due to the increasing number of knee arthroplasties performed and decreasing patient age at implantation, there is a demand for accurate diagnosis to determine appropriate treatment of symptomatic joints following knee arthroplasty, and for monitoring of patients at risk. Magnetic resonance (MR) imaging allows for comprehensive imaging evaluation of the tissues surrounding knee arthroplasty implants with metallic components, including the polyethylene components. Optimized conventional and advanced pulse sequences can result in substantial metallic artifact reduction and afford improved visualization of bone, implant-tissue interfaces, and periprosthetic soft tissue for the diagnosis of arthroplasty-related complications. In this review article, we discuss strategies for MR imaging around knee arthroplasty implants and illustrate the imaging appearances of common modes of failure, including aseptic loosening, polyethylene wear-induced synovitis and osteolysis, periprosthetic joint infections, fracture, patellar clunk syndrome, recurrent hemarthrosis, arthrofibrosis, component malalignment, extensor mechanism injury, and instability. A systematic approach is provided for evaluation of MR imaging of knee implants. MR imaging with optimized conventional pulse sequences and advanced metal artifact reduction techniques can contribute important information for diagnosis, prognosis, risk stratification, and surgical planning.
PMCID:4613886
PMID: 26295591
ISSN: 1527-1323
CID: 4160872
Multidetector CT and three-dimensional CT angiography of upper extremity arterial injury
Fritz, Jan; Efron, David T; Fishman, Elliot K
Successful management of upper extremity arterial injury requires fast and accurate diagnosis. The rate of limb preservation depends on the location, severity, and time of ischemia. Indications for diagnostic imaging depend on the mechanism and type of injury, clinical signs, cardiovascular stability, and clinical suspicion. Because of ease of access, speed, and high accuracy for this diagnosis, multidetector computed tomographic (MDCT) angiography is often used as the first line imaging modality. MDCT systems with 64 slice configuration and more afford high temporal and spatial high-resolution, isotropic data acquisition and integration with whole-body trauma MDCT protocols. The use of individual injection timing protocols ensures high diagnostic image quality. Several strategies are available to reduce radiation exposure. Direct MDCT angiography findings of arterial injuries include active extravasation, luminal narrowing, lack of luminal contrast opacification, filling defect, arteriovenous fistula, and pseudoaneurysm. Important descriptors are location and length of defect, degree of luminal narrowing, and presence of distal arterial supply reconstitution. Proximal arterial injuries include the subclavian, axillary, and brachial arteries. Distal arterial injuries include the ulnar and radial arteries, as well as the palmar arterial arches. Concomitant venous injury, musculoskeletal injury, and nerve damage are common. In this exhibit, we outline the role of MDCT angiography in the diagnosis and management of upper extremity arterial injury, discuss strategies for MDCT angiography acquisition and concepts of data visualization, and illustrate various types of injuries.
PMID: 25504031
ISSN: 1438-1435
CID: 4160862