Try a new search

Format these results:

Searched for:

in-biosketch:true

person:goldbi05

Total Results:

308


Actein activates stress- and statin-associated responses and is bioavailable in Sprague-Dawley rats

Einbond, Linda Saxe; Soffritti, Morando; Esposti, Davide Degli; Park, Taesik; Cruz, Erica; Su, Tao; Wu, Hsan-Au; Wang, Xiaomei; Zhang, Yu-Jing; Ham, Justin; Goldberg, Ira J; Kronenberg, Fredi; Vladimirova, Antoaneta
The purpose of this study was to assess in rats the pharmacological parameters and effects on gene expression in the liver of the triterpene glycoside actein. Actein, an active component from the herb black cohosh, has been shown to inhibit the proliferation of human breast cancer cells. To conduct our assessment, we determined the molecular effects of actein on livers from Sprague-Dawley rats treated with actein at 35.7 mg/kg for 6 and 24 h. Chemogenomic analyses indicated that actein elicited stress and statin-associated responses in the liver; actein altered expression of cholesterol and fatty acid biosynthetic genes, p53 pathway genes, CCND1 and ID3. Real-time RT-PCR validated that actein induced three time-dependent patterns of gene expression in the liver: (i) a decrease followed by a significant increase of HMGCS1, HMGCR, HSD17B7, NQO1, S100A9; (ii) a progressive increase of BZRP and CYP7A1 and (iii) a significant increase followed by a decrease of CCND1 and ID3. Consistent with actein's statin- and stress-associated responses, actein reduced free fatty acid and cholesterol content in the liver by 0.6-fold at 24 h and inhibited the growth of human HepG2 liver cancer cells. To determine the bioavailability of actein, we collected serum samples for pharmacokinetic analysis at various times up to 24 h. The serum level of actein peaked at 2.4 microg/mL at 6 h. Actein's ability to alter pathways involved in lipid disorders and carcinogenesis may make it a new agent for preventing and treating these major disorders.
PMID: 19527300
ISSN: 0767-3981
CID: 948782

Serine palmitoyltransferase (SPT) deficient mice absorb less cholesterol

Li, Zhiqiang; Park, Tae-Sik; Li, Yan; Pan, Xiaoyue; Iqbal, Jahangir; Lu, David; Tang, Weiqing; Yu, Liqing; Goldberg, Ira J; Hussain, M Mahmood; Jiang, Xian-Cheng
Serine palmitoyltransferase (SPT) is the key enzyme for the biosynthesis of sphingolipids. It has been reported that oral administration of myriocin (an SPT inhibitor) decreases plasma sphingomyelin (SM) and cholesterol levels, and reduces atherosclerosis in apoE knockout (KO) mice. We studied cholesterol absorption in myriocin-treated WT or apoE KO animals and found that, after myriocin treatment, the mice absorbed significantly less cholesterol than controls, with no observable pathological changes in the small intestine. More importantly, we found that heterozygous Sptlc1 (a subunit of SPT) KO mice also absorbed significantly less cholesterol than controls. To understand the mechanism, we measured protein levels of Niemann-Pick C1-like 1 (NPC1L1), ABCG5, and ABCA1, three key factors involved in intestinal cholesterol absorption. We found that NPC1L1 and ABCA1 were decreased, whereas ABCG5 was increased in the SPT deficient small intestine. SM levels on the apical membrane were also measured and they were significantly decreased in SPT deficient mice, compared with controls. In conclusion, SPT deficiency might reduce intestinal cholesterol absorption by altering NPC1L1 and ABCG5 protein levels in the apical membranes of enterocytes through lowering apical membrane SM levels. This may be also true for ABCA1 which locates on basal membrane of enterocytes. Manipulation of SPT activity could thus provide a novel alternative treatment for dyslipidemia.
PMCID:4371774
PMID: 19416652
ISSN: 0006-3002
CID: 948792

Regulation of fatty acid uptake into tissues: lipoprotein lipase- and CD36-mediated pathways

Goldberg, Ira J; Eckel, Robert H; Abumrad, Nada A
Cells obtain FAs either from LPL-catalyzed hydrolysis of lipoprotein triglyceride or from unesterified FFAs associated with albumin. LPL also influences uptake of esterified lipids such as cholesteryl and retinyl esters that are not hydrolyzed in the plasma. This process might not involve LPL enzymatic activity. LPL is regulated by feeding/fasting, insulin, and exercise. Although a number of molecules may affect cellular uptake of FFAs, the best characterized is CD36. Genetic deletion of this multiligand receptor reduces FFA uptake into skeletal muscle, heart, and adipose tissue, and impairs intestinal chylomicron production and clearance of lipoproteins from the blood. CD36 is regulated by some of the same factors that regulate LPL, including insulin, muscle contraction, and fasting, in part, via ubiquitination. LPL and CD36 actions in various tissues coordinate biodistribution of fat-derived calories.
PMCID:2674753
PMID: 19033209
ISSN: 0022-2275
CID: 948802

Hypertriglyceridemia: impact and treatment

Goldberg, Ira J
The treatment of elevated levels of low-density lipoprotein cholesterol is standard medical practice supported by conclusive outcome data. Less definitive information exists for hypertriglyceridemia. Only in the setting of severe hyperchylomicronemia is the benefit of triglyceride lowering clear: it is a means to reduce the risk of pancreatitis. The relationship of triglycerides and cardiovascular disease is still unclear. Moreover, the cardiovascular benefits of reducing triglycerides and of using triglyceride-lowering medications remain unproved. Nonetheless it has become almost standard to reduce the levels of triglyceride-rich lipoproteins that are a major component of plasma non-high-density lipoprotein cholesterol.
PMID: 19217516
ISSN: 0889-8529
CID: 948812

Regulation of plasma fructose and mortality in mice by the aldose reductase inhibitor lidorestat

Noh, Hye-Lim; Hu, Yunying; Park, Tae-Sik; DiCioccio, Thomas; Nichols, Andrew J; Okajima, Kazue; Homma, Shunichi; Goldberg, Ira J
Aldose reductase (AR), an enzyme widely believed to be involved in the aberrant metabolism of glucose and development of diabetic complications, is expressed at low levels in the mouse. We studied whether expression of human AR (hAR), its inhibition with lidorestat, which is an AR inhibitor (ARI), and the presence of streptozotocin (STZ)-induced diabetes altered plasma fructose, mortality, and/or vascular lesions in low-density lipoprotein (LDL) receptor-deficient [Ldlr(-/-)] mice. Mice were made diabetic at 12 weeks of age with low-dose STZ treatment. Four weeks later, the diabetic animals (glucose > 20 mM) were blindly assigned to a 0.15% cholesterol diet with or without ARI. After 4 and 6 weeks, there were no significant differences in body weights or plasma cholesterol, triglyceride, and glucose levels between the groups. Diabetic Ldlr(-/-) mice receiving ARI had plasma fructose levels of 5.2 +/- 2.3 microg/ml; placebo-treated mice had plasma fructose levels of 12.08 +/- 7.4 microg/ml, p < 0.01, despite the induction of fructose-metabolizing enzymes, fructose kinase and adolase B. After 6 weeks, hAR/Ldlr(-/-) mice on the placebo-containing diet had greater mortality (31%, n = 9/26 versus 6%, n = 1/21, p < 0.05). The mortality rate in the ARI-treated group was similar to that in non-hAR-expressing mice. Therefore, diabetic hAR-expressing mice had increased fructose and greater mortality that was corrected by inclusion of lidorestat, an ARI, in the diet. If similar effects are found in humans, such treatment could improve clinical outcome in diabetic patients.
PMCID:2682276
PMID: 18974362
ISSN: 0022-3565
CID: 948822

Skeletal muscle-specific deletion of lipoprotein lipase enhances insulin signaling in skeletal muscle but causes insulin resistance in liver and other tissues

Wang, Hong; Knaub, Leslie A; Jensen, Dalan R; Young Jung, Dae; Hong, Eun-Gyoung; Ko, Hwi-Jin; Coates, Alison M; Goldberg, Ira J; de la Houssaye, Becky A; Janssen, Rachel C; McCurdy, Carrie E; Rahman, Shaikh M; Soo Choi, Cheol; Shulman, Gerald I; Kim, Jason K; Friedman, Jacob E; Eckel, Robert H
OBJECTIVE: Skeletal muscle-specific LPL knockout mouse (SMLPL(-/-)) were created to study the systemic impact of reduced lipoprotein lipid delivery in skeletal muscle on insulin sensitivity, body weight, and composition. RESEARCH DESIGN AND METHODS: Tissue-specific insulin sensitivity was assessed using a hyperinsulinemic-euglycemic clamp and 2-deoxyglucose uptake. Gene expression and insulin-signaling molecules were compared in skeletal muscle and liver of SMLPL(-/-) and control mice. RESULTS: Nine-week-old SMLPL(-/-) mice showed no differences in body weight, fat mass, or whole-body insulin sensitivity, but older SMLPL(-/-) mice had greater weight gain and whole-body insulin resistance. High-fat diet feeding accelerated the development of obesity. In young SMLPL(-/-) mice, insulin-stimulated glucose uptake was increased 58% in the skeletal muscle, but was reduced in white adipose tissue (WAT) and heart. Insulin action was also diminished in liver: 40% suppression of hepatic glucose production in SMLPL(-/-) vs. 90% in control mice. Skeletal muscle triglyceride was 38% lower, and insulin-stimulated phosphorylated Akt (Ser473) was twofold greater in SMLPL(-/-) mice without changes in IRS-1 tyrosine phosphorylation and phosphatidylinositol 3-kinase activity. Hepatic triglyceride and liver X receptor, carbohydrate response element-binding protein, and PEPCK mRNAs were unaffected in SMLPL(-/-) mice, but peroxisome proliferator-activated receptor (PPAR)-gamma coactivator-1alpha and interleukin-1beta mRNAs were higher, and stearoyl-coenzyme A desaturase-1 and PPARgamma mRNAs were reduced. CONCLUSIONS: LPL deletion in skeletal muscle reduces lipid storage and increases insulin signaling in skeletal muscle without changes in body composition. Moreover, lack of LPL in skeletal muscle results in insulin resistance in other key metabolic tissues and ultimately leads to obesity and systemic insulin resistance.
PMCID:2606858
PMID: 18952837
ISSN: 0012-1797
CID: 948832

ABCG1 and HDL protect against endothelial dysfunction in mice fed a high-cholesterol diet

Terasaka, Naoki; Yu, Shuiqing; Yvan-Charvet, Laurent; Wang, Nan; Mzhavia, Nino; Langlois, Read; Pagler, Tamara; Li, Rong; Welch, Carrie L; Goldberg, Ira J; Tall, Alan R
Plasma HDL levels are inversely related to the incidence of atherosclerotic disease. Some of the atheroprotective effects of HDL are likely mediated via preservation of EC function. Whether the beneficial effects of HDL on ECs depend on its involvement in cholesterol efflux via the ATP-binding cassette transporters ABCA1 and ABCG1, which promote efflux of cholesterol and oxysterols from macrophages, has not been investigated. To address this, we assessed endothelial function in Abca1(-/-), Abcg1(-/-), and Abca1(-/-)Abcg1(-/-) mice fed either a high-cholesterol diet (HCD) or a Western diet (WTD). Non-atherosclerotic arteries from WTD-fed Abcg1(-/-) and Abca1(-/-)Abcg1(-/-) mice exhibited a marked decrease in endothelium-dependent vasorelaxation, while Abca1(-/-) mice had a milder defect. In addition, eNOS activity was reduced in aortic homogenates generated from Abcg1(-/-) mice fed either a HCD or a WTD, and this correlated with decreased levels of the active dimeric form of eNOS. More detailed analysis indicated that ABCG1 was expressed primarily in ECs, and that these cells accumulated the oxysterol 7-ketocholesterol (7-KC) when Abcg1(-/-) mice were fed a WTD. Consistent with these data, ABCG1 had a major role in promoting efflux of cholesterol and 7-KC in cultured human aortic ECs (HAECs). Furthermore, HDL treatment of HAECs prevented 7-KC-induced ROS production and active eNOS dimer disruption in an ABCG1-dependent manner. Our data suggest that ABCG1 and HDL maintain EC function in HCD-fed mice by promoting efflux of cholesterol and 7-oxysterols and preserving active eNOS dimer levels.
PMCID:2567835
PMID: 18924609
ISSN: 0021-9738
CID: 948842

Ceramide is a cardiotoxin in lipotoxic cardiomyopathy

Park, Tae-Sik; Hu, Yunying; Noh, Hye-Lim; Drosatos, Konstantinos; Okajima, Kazue; Buchanan, Jonathan; Tuinei, Joseph; Homma, Shunichi; Jiang, Xian-Cheng; Abel, E Dale; Goldberg, Ira J
Ceramide is among a number of potential lipotoxic molecules that are thought to modulate cellular energy metabolism. The heart is one of the tissues thought to become dysfunctional due to excess lipid accumulation. Dilated lipotoxic cardiomyopathy, thought to be the result of diabetes and severe obesity, has been modeled in several genetically altered mice, including animals with cardiac-specific overexpression of glycosylphosphatidylinositol (GPI)-anchored human lipoprotein lipase (LpL(GPI)). To test whether excess ceramide was implicated in cardiac lipotoxicity, de novo ceramide biosynthesis was inhibited pharmacologically by myriocin and genetically by heterozygous deletion of LCB1, a subunit of serine palmitoyltransferase (SPT). Inhibition of SPT, a rate-limiting enzyme in ceramide biosynthesis, reduced fatty acid and increased glucose oxidation in isolated perfused LpL(GPI) hearts, improved systolic function, and prolonged survival rates. Our results suggest a critical role for ceramide accumulation in the pathogenesis of lipotoxic cardiomyopathy.
PMCID:2533410
PMID: 18515784
ISSN: 0022-2275
CID: 948852

Neuronatin: a new inflammation gene expressed on the aortic endothelium of diabetic mice

Mzhavia, Nino; Yu, Shuiqing; Ikeda, Shota; Chu, Tehua T; Goldberg, Ira; Dansky, Hayes M
OBJECTIVE: Identification of arterial genes and pathways altered in obesity and diabetes. RESEARCH DESIGN AND METHODS: Aortic gene expression profiles of obese and diabetic db/db, high-fat diet-fed C57BL/6J, and control mice were obtained using mouse Affymetrix arrays. Neuronatin (Nnat) was selected for further analysis. To determine the function of Nnat, a recombinant adenovirus (Ad-Nnat) was used to overexpress the Nnat gene in primary endothelial cells and in the mouse aorta in vivo. RESULTS: Nnat, a gene of unknown vascular function, was upregulated in the aortas of db/db and high-fat diet-fed mice. Nnat gene expression was increased in db/db mouse aorta endothelial cells. Nnat protein was localized to aortic endothelium and was selectively increased in the endothelium of db/db mice. Infection of primary human aortic endothelial cells (HAECs) with Ad-Nnat increased expression of a panel of nuclear factor-kappaB (NF-kappaB)-regulated genes, including inflammatory cytokines, chemokines, and cell adhesion molecules. Infection of mouse carotid arteries in vivo with the Ad-Nnat increased expression of vascular cell adhesion molecule 1 protein. Nnat activation of NF-kappaB and inflammatory gene expression in HAECs was mediated through pathways distinct from tumor necrosis factor-alpha. Nnat expression stimulated p38, Jun NH(2)-terminal kinase, extracellular signal-related kinase, and AKT kinase phosphorylation. Phosphatidylinositol 3-kinase and p38 inhibitors prevented Nnat-mediated activation of NF-kappaB-induced gene expression. CONCLUSIONS: Nnat expression is increased in endothelial cells of obese and diabetic mouse blood vessels. The effects of Nnat on inflammatory pathways in vitro and in vivo suggest a pathophysiological role of this new gene in diabetic vascular diseases.
PMCID:2551689
PMID: 18591389
ISSN: 0012-1797
CID: 955622

Cardiac metabolic compensation to hypertension requires lipoprotein lipase

Yamashita, Haruyo; Bharadwaj, Kalyani G; Ikeda, Shota; Park, Tae-Sik; Goldberg, Ira J
Fatty acids (FAs) are acquired from free FA associated with albumin and lipoprotein triglyceride that is hydrolyzed by lipoprotein lipase (LpL). Hypertrophied hearts shift their substrate usage pattern to more glucose and less FA. However, FAs may still be an important source of energy in hypertrophied hearts. The aim of this study was to examine the importance of LpL-derived FAs in hypertensive hypertrophied hearts. We followed cardiac function and metabolic changes during 2 wk of angiotensin II (ANG II)-induced hypertension in control and heart-specific lipoprotein lipase knockout (hLpL0) mice. Glucose metabolism was increased in ANG II-treated control (control/ANG II) hearts, raising it to the same level as hLpL0 hearts. FA uptake-related genes, CD36 and FATP1, were reduced in control/ANG II hearts to levels found in hLpL0 hearts. ANG II did not alter these metabolic genes in hLpL0 mice. LpL activity was preserved, and mitochondrial FA oxidation-related genes were not altered in control/ANG II hearts. In control/ANG II hearts, triglyceride stores were consumed and reached the same levels as in hLpL0/ANG II hearts. Intracellular ATP content was reduced only in hLpL0/ANG II hearts. Both ANG II and deoxycorticosterone acetate-salt induced hypertension caused heart failure only in hLpL0 mice. Our data suggest that LpL activity is required for normal cardiac metabolic compensation to hypertensive stress.
PMCID:2536729
PMID: 18647880
ISSN: 0193-1849
CID: 948862