Try a new search

Format these results:

Searched for:

in-biosketch:true

person:fritzj02

Total Results:

246


Deep Learning Superresolution for Simultaneous Multislice Parallel Imaging-Accelerated Knee MRI Using Arthroscopy Validation

Walter, Sven S; Vosshenrich, Jan; Cantarelli Rodrigues, Tatiane; Dalili, Danoob; Fritz, Benjamin; Kijowski, Richard; Park, Eun Hae; Serfaty, Aline; Stern, Steven E; Brinkmann, Inge; Koerzdoerfer, Gregor; Fritz, Jan
Background Deep learning (DL) methods can improve accelerated MRI but require validation against an independent reference standard to ensure robustness and accuracy. Purpose To validate the diagnostic performance of twofold-simultaneous-multislice (SMSx2) twofold-parallel-imaging (PIx2)-accelerated DL superresolution MRI in the knee against conventional SMSx2-PIx2-accelerated MRI using arthroscopy as the reference standard. Materials and Methods Adults with painful knee conditions were prospectively enrolled from December 2021 to October 2022. Participants underwent fourfold SMSx2-PIx2-accelerated standard-of-care and investigational DL superresolution MRI at 3 T. Seven radiologists independently evaluated the MRI examinations for overall image quality (using Likert scale scores: 1, very bad, to 5, very good) and the presence or absence of meniscus and ligament tears. Articular cartilage was categorized as intact, or partial or full-thickness defects. Statistical analyses included interreader agreements (Cohen κ and Gwet AC2) and diagnostic performance testing used area under the receiver operating characteristic curve (AUC) values. Results A total of 116 adults (mean age, 45 years ± 15 [SD]; 74 men) who underwent arthroscopic surgery within 38 days ± 22 were evaluated. Overall image quality was better for DL superresolution MRI (median Likert score, 5; range, 3-5) than conventional MRI (median Likert score, 4; range, 3-5) (P < .001). Diagnostic performances of conventional versus DL superresolution MRI were similar for medial meniscus tears (AUC, 0.94 [95% CI: 0.89, 0.97] vs 0.94 [95% CI: 0.90, 0.98], respectively; P > .99), lateral meniscus tears (AUC, 0.85 [95% CI: 0.78, 0.91] vs 0.87 [95% CI: 0.81, 0.94], respectively; P = .96), and anterior cruciate ligament tears (AUC, 0.98 [95% CI: 0.93, >0.99] vs 0.98 [95% CI: 0.93, >0.99], respectively; P > .99). DL superresolution MRI (AUC, 0.78; 95% CI: 0.75, 0.81) had higher diagnostic performance than conventional MRI (AUC, 0.71; 95% CI: 0.67, 0.74; P = .002) for articular cartilage lesions. DL superresolution MRI did not introduce hallucinations or erroneously omit abnormalities. Conclusion Compared with conventional SMSx2-PIx2-accelerated MRI, fourfold SMSx2-PIx2-accelerated DL superresolution MRI in the knee provided better image quality, similar performance for detecting meniscus and ligament tears, and improved performance for depicting articular cartilage lesions. © RSNA, 2025 Supplemental material is available for this article. See also the editorial by Nevalainen in this issue.
PMID: 39873603
ISSN: 1527-1315
CID: 5780712

Imaging approach to prosthetic joint infection

Jardon, Meghan; Fritz, Jan; Samim, Mohammad
The diagnosis of prosthetic joint infection (PJI) remains challenging, despite multiple available laboratory tests for both serum and synovial fluid analysis. The clinical symptoms of PJI are not always characteristic, particularly in the chronic phase, and there is often significant overlap in symptoms with non-infectious forms of arthroplasty failure. Further exacerbating this challenge is lack of a universally accepted definition for PJI, with publications from multiple professional societies citing different diagnostic criteria. While not included in many of the major societies' guidelines for diagnosis of PJI, diagnostic imaging can play an important role in the workup of suspected PJI. In this article, we will review an approach to diagnostic imaging modalities (radiography, ultrasound, CT, MRI) in the workup of suspected PJI, with special attention to the limitations and benefits of each modality. We will also discuss the role that image-guided interventions play in the workup of these patients, through ultrasound and fluoroscopically guided joint aspirations. While there is no standard imaging algorithm that can universally applied to all patients with suspected PJI, we will discuss a general approach to diagnostic imaging and image-guided intervention in this clinical scenario.
PMID: 38133670
ISSN: 1432-2161
CID: 5612252

Cutting-Edge Developments in Foot and Ankle Imaging: A Gateway to Enhanced Diagnostic Accuracy and Recovery Monitoring [Editorial]

Fritz, Jan
PMID: 39237189
ISSN: 1558-2302
CID: 5688252

Photon-Counting CT in Musculoskeletal Imaging-10 Key Questions Answered

Vosshenrich, Jan; O'Donnell, Thomas; Fritz, Jan
PMID: 39490034
ISSN: 1558-4658
CID: 5803372

[Accelerated musculoskeletal magnetic resonance imaging with deep learning-based image reconstruction at 0.55 T-3 T]

Vosshenrich, Jan; Fritz, Jan
CLINICAL/METHODICAL ISSUE/OBJECTIVE:Magnetic resonance imaging (MRI) is a central component of musculoskeletal imaging. However, long image acquisition times can pose practical barriers in clinical practice. STANDARD RADIOLOGICAL METHODS/METHODS:MRI is the established modality of choice in the diagnostic workup of injuries and diseases of the musculoskeletal system due to its high spatial resolution, excellent signal-to-noise ratio (SNR), and unparalleled soft tissue contrast. METHODOLOGICAL INNOVATIONS/UNASSIGNED:Continuous advances in hardware and software technology over the last few decades have enabled four-fold acceleration of 2D turbo-spin-echo (TSE) without compromising image quality or diagnostic performance. The recent clinical introduction of deep learning (DL)-based image reconstruction algorithms helps to minimize further the interdependency between SNR, spatial resolution and image acquisition time and allows the use of higher acceleration factors. PERFORMANCE/METHODS:The combined use of advanced acceleration techniques and DL-based image reconstruction holds enormous potential to maximize efficiency, patient comfort, access, and value of musculoskeletal MRI while maintaining excellent diagnostic accuracy. ACHIEVEMENTS/RESULTS:Accelerated MRI with DL-based image reconstruction has rapidly found its way into clinical practice and proven to be of added value. Furthermore, recent investigations suggest that the potential of this technology does not yet appear to be fully harvested. PRACTICAL RECOMMENDATIONS/CONCLUSIONS:Deep learning-reconstructed fast musculoskeletal MRI examinations can be reliably used for diagnostic work-up and follow-up of musculoskeletal pathologies in clinical practice.
PMID: 38864874
ISSN: 2731-7056
CID: 5669102

Multiaxial 3D MRI of the Ankle: Advanced High-Resolution Visualization of Ligaments, Tendons, and Articular Cartilage

Fritz, Benjamin; de Cesar Netto, Cesar; Fritz, Jan
MRI is a valuable tool for diagnosing a broad spectrum of acute and chronic ankle disorders, including ligament tears, tendinopathy, and osteochondral lesions. Traditional two-dimensional (2D) MRI provides a high image signal and contrast of anatomic structures for accurately characterizing articular cartilage, bone marrow, synovium, ligaments, tendons, and nerves. However, 2D MRI limitations are thick slices and fixed slice orientations. In clinical practice, 2D MRI is limited to 2 to 3 mm slice thickness, which can cause blurred contours of oblique structures due to volume averaging effects within the image slice. In addition, image plane orientations are fixated and cannot be changed after the scan, resulting in 2D MRI lacking multiplanar and multiaxial reformation abilities for individualized image plane orientations along oblique and curved anatomic structures, such as ankle ligaments and tendons. In contrast, three-dimensional (3D) MRI is a newer, clinically available MRI technique capable of acquiring high-resolution ankle MRI data sets with isotropic voxel size. The inherently high spatial resolution of 3D MRI permits up to five times thinner (0.5 mm) image slices. In addition, 3D MRI can be acquired image voxel with the same edge length in all three space dimensions (isotropism), permitting unrestricted multiplanar and multiaxial image reformation and postprocessing after the MRI scan. Clinical 3D MRI of the ankle with 0.5 to 0.7 mm isotropic voxel size resolves the smallest anatomic ankle structures and abnormalities of ligament and tendon fibers, osteochondral lesions, and nerves. After acquiring the images, operators can align image planes individually along any anatomic structure of interest, such as ligaments and tendons segments. In addition, curved multiplanar image reformations can unfold the entire course of multiaxially curved structures, such as perimalleolar tendons, into one image plane. We recommend adding 3D MRI pulse sequences to traditional 2D MRI protocols to visualize small and curved ankle structures to better advantage. This article provides an overview of the clinical application of 3D MRI of the ankle, compares diagnostic performances of 2D and 3D MRI for diagnosing ankle abnormalities, and illustrates clinical 3D ankle MRI applications.
PMID: 39237179
ISSN: 1558-2302
CID: 5688232

Magnetic Resonance Imaging of Total Ankle Arthroplasty: State-of-The-Art Assessment of Implant-Related Pain and Dysfunction

Fritz, Jan; Rashidi, Ali; de Cesar Netto, Cesar
Total ankle arthroplasty (TAA) is an effective alternative for treating patients with end-stage ankle degeneration, improving mobility, and providing pain relief. Implant survivorship is constantly improving; however, complications occur. Many causes of pain and dysfunction after total ankle arthroplasty can be diagnosed accurately with clinical examination, laboratory, radiography, and computer tomography. However, when there are no or inconclusive imaging findings, magnetic resonance imaging (MRI) is highly accurate in identifying and characterizing bone resorption, osteolysis, infection, osseous stress reactions, nondisplaced fractures, polyethylene damage, nerve injuries and neuropathies, as well as tendon and ligament tears. Multiple vendors offer effective, clinically available MRI techniques for metal artifact reduction MRI of total ankle arthroplasty. This article reviews the MRI appearances of common TAA implant systems, clinically available techniques and protocols for metal artifact reduction MRI of TAA implants, and the MRI appearances of a broad spectrum of TAA-related complications.
PMID: 39237176
ISSN: 1558-2302
CID: 5688222

Dual-Energy Computed Tomography Applications in Rheumatology

Park, Eun Hae; O'Donnell, Thomas; Fritz, Jan
Dual-energy computed tomography (DECT) has emerged as a transformative tool in the past decade. Initially employed in gout within the field of rheumatology to distinguish and quantify monosodium urate crystals through its dual-material discrimination capability, DECT has since broadened its clinical applications. It now encompasses various rheumatic diseases, employing advanced techniques such as bone marrow edema assessment, iodine mapping, and collagen-specific imaging. This review article aims to examine the unique characteristics of DECT, discuss its strengths and limitations, illustrate its applications for accurately evaluating various rheumatic diseases in clinical practice, and propose future directions for DECT in rheumatology.
PMID: 39059976
ISSN: 1557-8275
CID: 5694712

Modern acceleration in musculoskeletal MRI: applications, implications, and challenges

Vosshenrich, Jan; Koerzdoerfer, Gregor; Fritz, Jan
Magnetic resonance imaging (MRI) is crucial for accurately diagnosing a wide spectrum of musculoskeletal conditions due to its superior soft tissue contrast resolution. However, the long acquisition times of traditional two-dimensional (2D) and three-dimensional (3D) fast and turbo spin-echo (TSE) pulse sequences can limit patient access and comfort. Recent technical advancements have introduced acceleration techniques that significantly reduce MRI times for musculoskeletal examinations. Key acceleration methods include parallel imaging (PI), simultaneous multi-slice acquisition (SMS), and compressed sensing (CS), enabling up to eightfold faster scans while maintaining image quality, resolution, and safety standards. These innovations now allow for 3- to 6-fold accelerated clinical musculoskeletal MRI exams, reducing scan times to 4 to 6 min for joints and spine imaging. Evolving deep learning-based image reconstruction promises even faster scans without compromising quality. Current research indicates that combining acceleration techniques, deep learning image reconstruction, and superresolution algorithms will eventually facilitate tenfold accelerated musculoskeletal MRI in routine clinical practice. Such rapid MRI protocols can drastically reduce scan times by 80-90% compared to conventional methods. Implementing these rapid imaging protocols does impact workflow, indirect costs, and workload for MRI technologists and radiologists, which requires careful management. However, the shift from conventional to accelerated, deep learning-based MRI enhances the value of musculoskeletal MRI by improving patient access and comfort and promoting sustainable imaging practices. This article offers a comprehensive overview of the technical aspects, benefits, and challenges of modern accelerated musculoskeletal MRI, guiding radiologists and researchers in this evolving field.
PMID: 38441617
ISSN: 1432-2161
CID: 5694522

Fat Suppression in Distal Extremity 3-T MRI Using Spectral Heterogeneity Adaptive Radiofrequency Pulses

Khodarahmi, Iman; Walter, William R; Bruno, Mary; Brinkmann, Inge M; Keerthivasan, Mahesh B; Chebrolu, Venkata V; Fritz, Jan
Background Conventional chemical shift selective (CHESS) fat suppression may fail in distal extremity MRI due to sensitivity to field inhomogeneities. Purpose To develop a patient-specific fat-suppression method for distal extremity 3-T MRI by exploiting the spectral heterogeneity adaptive radiofrequency pulse (SHARP) technique and to compare it to fat suppression with CHESS. Materials and Methods SHARP uses the routinely acquired frequency spectrum at MRI calibration to adapt the frequency range and time-bandwidth product of the fat-suppression pulse. In this prospective study, fat suppression by SHARP was assessed by numerical simulations, phantom experiments, and imaging in 15 asymptomatic participants who underwent ankle, foot, and hand (in superman and hand-by-the-side positions) MRI using SHARP, CHESS, and reference standard (short-tau inversion recovery or Dixon) techniques. Three readers ranked the MRI scans from 1 (best) to 3 (worst) regarding fat-suppression homogeneity. The added value of SHARP was defined as the difference between the proportions of images where SHARP outranked CHESS and where CHESS outranked SHARP. Friedman, Wilcoxon signed rank, and χ2 tests were used to compare in vivo data. Results At numerical simulations, SHARP showed 0% water and 62%-70% fat suppression, whereas CHESS showed 2% water and 57% fat suppression. Phantom data demonstrated lower fat-suppression inhomogeneity indexes with Dixon (1.0%) and SHARP (2.4%) compared with CHESS (10.7%). In 15 participants (mean age, 38.5 years ± 12.8 [SD]; six female participants), mean ranking by readers of fat homogeneity in the reference technique (ankle, foot, hand in superman position, and hand-by-the-side position: 1.02, 1.02, 1.03, and 1.06, respectively) was higher than those with SHARP (1.39, 1.46, 1.50, and 1.66, respectively), which were higher than those with CHESS (1.64, 1.80, 1.61, and 1.80, respectively) (all P < .001). The added value of SHARP was highest for images in the foot (389 of 1158; 33.6%; P < .001 vs other joints), followed by the ankle (247 of 971 [25%]; P < .001 vs both hand positions), and lowest for hand-by-the-side and hand in superman positions (158 of 1223; [13%] and 133 of 1193 [11%], respectively; P = .18). Conclusion SHARP provided more homogeneous fat suppression than CHESS. © RSNA, 2024 Supplemental material is available for this article.
PMID: 39315899
ISSN: 1527-1315
CID: 5742032