Searched for: in-biosketch:true
person:fritzj02
Editorial Comment: Quantitative T2 and T1rho MRI-A Research Tool Seeking Clinical Relevance [Comment]
Fritz, Jan
PMID: 39140633
ISSN: 1546-3141
CID: 5726872
MRI-based Neuropathy Score Reporting And Data System (NS-RADS): multi-institutional wider-experience usability study of peripheral neuropathy conditions among 32 radiology readers
Chhabra, Avneesh; Duarte Silva, Flavio; Mogharrabi, Bayan; Guirguis, Mina; Ashikyan, Oganes; Rasper, Michael; Park, Eunhae; Walter, Sven S; Umpierrez, Monica; Pezeshk, Parham; Thurlow, Peter C; Jagadale, Akshaya; Bajaj, Gitanjali; Komarraju, Aparna; Wu, Jim S; Aguilera, Antonio; Cardoso, Fabiano Nassar; Souza, Felipe; Chaganti, SubbaRao; Antil, Neha; Manzano, Wilfred; Stebner, Alexander; Evers, Jochen; Petterson, Matthew; Geisbush, Thomas; Downing, Chad; Christensen, Diana; Horneber, Elizabeth; Kim, Jun Man; Purushothaman, Rangarajan; Mohanan, Shilpa; Raichandani, Surbhi; Vilanilam, George; Cabrera, Clementina; Manov, John; Maloney, Sean; Deshmukh, Swati D; Lutz, Amelie M; Fritz, Jan; Andreisek, Gustav; Chalian, Majid; Wong, Philip K; Pandey, Tarun; Subhawong, Ty; Xi, Yin
OBJECTIVE:To determine the inter-reader reliability and diagnostic performance of classification and severity scales of Neuropathy Score Reporting And Data System (NS-RADS) among readers of differing experience levels after limited teaching of the scoring system. METHODS:This is a multi-institutional, cross-sectional, retrospective study of MRI cases of proven peripheral neuropathy (PN) conditions. Thirty-two radiology readers with varying experience levels were recruited from different institutions. Each reader attended and received a structured presentation that described the NS-RADS classification system containing examples and reviewed published articles on this subject. The readers were then asked to perform NS-RADS scoring with recording of category, subcategory, and most likely diagnosis. Inter-reader agreements were evaluated by Conger's kappa and diagnostic accuracy was calculated for each reader as percent correct diagnosis. A linear mixed model was used to estimate and compare accuracy between trainees and attendings. RESULTS:Across all readers, agreement was good for NS-RADS category and moderate for subcategory. Inter-reader agreement of trainees was comparable to attendings (0.65 vs 0.65). Reader accuracy for attendings was 75% (95% CI 73%, 77%), slightly higher than for trainees (71% (69%, 72%), p = 0.0006) for nerves and comparable for muscles (attendings, 87.5% (95% CI 86.1-88.8%) and trainees, 86.6% (95% CI 85.2-87.9%), p = 0.4). NS-RADS accuracy was also higher than average accuracy for the most plausible diagnosis for attending radiologists at 67% (95% CI 63%, 71%) and for trainees at 65% (95% CI 60%, 69%) (p = 0.036). CONCLUSION/CONCLUSIONS:Non-expert radiologists interpreted PN conditions with good accuracy and moderate-to-good inter-reader reliability using the NS-RADS scoring system. CLINICAL RELEVANCE STATEMENT/CONCLUSIONS:The Neuropathy Score Reporting And Data System (NS-RADS) is an accurate and reliable MRI-based image scoring system for practical use for the diagnosis and grading of severity of peripheral neuromuscular disorders by both experienced and general radiologists. KEY POINTS/CONCLUSIONS:• The Neuropathy Score Reporting And Data System (NS-RADS) can be used effectively by non-expert radiologists to categorize peripheral neuropathy. • Across 32 different experience-level readers, the agreement was good for NS-RADS category and moderate for NS-RADS subcategory. • NS-RADS accuracy was higher than the average accuracy for the most plausible diagnosis for both attending radiologists and trainees (at 75%, 71% and 65%, 65%, respectively).
PMID: 38244046
ISSN: 1432-1084
CID: 5701672
Designing Clinical MRI for Enhanced Workflow and Value
Lin, Dana J; Doshi, Ankur M; Fritz, Jan; Recht, Michael P
MRI is an expensive and traditionally time-intensive modality in imaging. With the paradigm shift toward value-based healthcare, radiology departments must examine the entire MRI process cycle to identify opportunities to optimize efficiency and enhance value for patients. Digital tools such as "frictionless scheduling" prioritize patient preference and convenience, thereby delivering patient-centered care. Recent advances in conventional and deep learning-based accelerated image reconstruction methods have reduced image acquisition time to such a degree that so-called nongradient time now constitutes a major percentage of total room time. For this reason, architectural design strategies that reconfigure patient preparation processes and decrease the turnaround time between scans can substantially impact overall throughput while also improving patient comfort and privacy. Real-time informatics tools that provide an enterprise-wide overview of MRI workflow and Picture Archiving and Communication System (PACS)-integrated instant messaging can complement these efforts by offering transparent, situational data and facilitating communication between radiology team members. Finally, long-term investment in training, recruiting, and retaining a highly skilled technologist workforce is essential for building a pipeline and team of technologists committed to excellence. Here, we highlight various opportunities for optimizing MRI workflow and enhancing value by offering many of our own on-the-ground experiences and conclude by anticipating some of the future directions for process improvement and innovation in clinical MR imaging. EVIDENCE LEVEL: N/A TECHNICAL EFFICACY: Stage 1.
PMID: 37795927
ISSN: 1522-2586
CID: 5664522
Soft tissue tumor imaging in adults: European Society of Musculoskeletal Radiology-Guidelines 2023-overview, and primary local imaging: how and where?
Noebauer-Huhmann, Iris-Melanie; Vanhoenacker, Filip M; Vilanova, Joan C; Tagliafico, Alberto S; Weber, Marc-André; Lalam, Radhesh K; Grieser, Thomas; Nikodinovska, Violeta Vasilevska; de Rooy, Jacky W J; Papakonstantinou, Olympia; Mccarthy, Catherine; Sconfienza, Luca Maria; Verstraete, Koenraad; Martel-Villagrán, José; Szomolanyi, Pavol; Lecouvet, Frédéric E; Afonso, Diana; Albtoush, Omar M; Aringhieri, Giacomo; Arkun, Remide; Aström, Gunnar; Bazzocchi, Alberto; Botchu, Rajesh; Breitenseher, Martin; Chaudhary, Snehansh; Dalili, Danoob; Davies, Mark; de Jonge, Milko C; Mete, Berna D; Fritz, Jan; Gielen, Jan L M A; Hide, Geoff; Isaac, Amanda; Ivanoski, Slavcho; Mansour, Ramy M; Muntaner-Gimbernat, Lorenzo; Navas, Ana; O Donnell, Paul; Örgüç, Şebnem; Rennie, Winston; Resano, Santiago; Robinson, Philip; Sanal, Hatice T; Ter Horst, Simone A J; van Langevelde, Kirsten; Wörtler, Klaus; Koelz, Marita; Panotopoulos, Joannis; Windhager, Reinhard; Bloem, Johannes L
OBJECTIVES/OBJECTIVE:Early, accurate diagnosis is crucial for the prognosis of patients with soft tissue sarcomas. To this end, standardization of imaging algorithms, technical requirements, and reporting is therefore a prerequisite. Since the first European Society of Musculoskeletal Radiology (ESSR) consensus in 2015, technical achievements, further insights into specific entities, and the revised WHO-classification (2020) and AJCC staging system (2017) made an update necessary. The guidelines are intended to support radiologists in their decision-making and contribute to interdisciplinary tumor board discussions. MATERIALS AND METHODS/METHODS:A validated Delphi method based on peer-reviewed literature was used to derive consensus among a panel of 46 specialized musculoskeletal radiologists from 12 European countries. Statements were scored online by level of agreement (0 to 10) during two iterative rounds. Either "group consensus," "group agreement," or "lack of agreement" was achieved. RESULTS:Eight sections were defined that finally contained 145 statements with comments. Overall, group consensus was reached in 95.9%, and group agreement in 4.1%. This communication contains the first part consisting of the imaging algorithm for suspected soft tissue tumors, methods for local imaging, and the role of tumor centers. CONCLUSION/CONCLUSIONS:Ultrasound represents the initial triage imaging modality for accessible and small tumors. MRI is the modality of choice for the characterization and local staging of most soft tissue tumors. CT is indicated in special situations. In suspicious or likely malignant tumors, a specialist tumor center should be contacted for referral or teleradiologic second opinion. This should be done before performing a biopsy, without exception. CLINICAL RELEVANCE/CONCLUSIONS:The updated ESSR soft tissue tumor imaging guidelines aim to provide best practice expert consensus for standardized imaging, to support radiologists in their decision-making, and to improve examination comparability both in individual patients and in future studies on individualized strategies. KEY POINTS/CONCLUSIONS:• Ultrasound remains the best initial triage imaging modality for accessible and small suspected soft tissue tumors. • MRI is the modality of choice for the characterization and local staging of soft tissue tumors in most cases; CT is indicated in special situations. Suspicious or likely malignant tumors should undergo biopsy. • In patients with large, indeterminate or suspicious tumors, a tumor reference center should be contacted for referral or teleradiologic second opinion; this must be done before a biopsy.
PMID: 38062268
ISSN: 1432-1084
CID: 5591492
SSR white paper: guidelines for utilization and performance of direct MR arthrography
Chang, Eric Y; Bencardino, Jenny T; French, Cristy N; Fritz, Jan; Hanrahan, Chris J; Jibri, Zaid; Kassarjian, Ara; Motamedi, Kambiz; Ringler, Michael D; Strickland, Colin D; Tiegs-Heiden, Christin A; Walker, Richard E A
OBJECTIVE:Direct magnetic resonance arthrography (dMRA) is often considered the most accurate imaging modality for the evaluation of intra-articular structures, but utilization and performance vary widely without consensus. The purpose of this white paper is to develop consensus recommendations on behalf of the Society of Skeletal Radiology (SSR) based on published literature and expert opinion. MATERIALS AND METHODS/METHODS:The Standards and Guidelines Committee of the SSR identified guidelines for utilization and performance of dMRA as an important topic for study and invited all SSR members with expertise and interest to volunteer for the white paper panel. This panel was tasked with determining an outline, reviewing the relevant literature, preparing a written document summarizing the issues and controversies, and providing recommendations. RESULTS:Twelve SSR members with expertise in dMRA formed the ad hoc white paper authorship committee. The published literature on dMRA was reviewed and summarized, focusing on clinical indications, technical considerations, safety, imaging protocols, complications, controversies, and gaps in knowledge. Recommendations for the utilization and performance of dMRA in the shoulder, elbow, wrist, hip, knee, and ankle/foot regions were developed in group consensus. CONCLUSION/CONCLUSIONS:Although direct MR arthrography has been previously used for a wide variety of clinical indications, the authorship panel recommends more selective application of this minimally invasive procedure. At present, direct MR arthrography remains an important procedure in the armamentarium of the musculoskeletal radiologist and is especially valuable when conventional MRI is indeterminant or results are discrepant with clinical evaluation.
PMID: 37566148
ISSN: 1432-2161
CID: 5613412
Correction to: SSR white paper: guidelines for utilization and performance of direct MR arthrography
Chang, Eric Y; Bencardino, Jenny T; French, Cristy N; Fritz, Jan; Hanrahan, Chris J; Jibri, Zaid; Kassarjian, Ara; Motamedi, Kambiz; Ringler, Michael D; Strickland, Colin D; Tiegs-Heiden, Christin A; Walker, Richard E A
PMID: 37695344
ISSN: 1432-2161
CID: 5593662
How AI May Transform Musculoskeletal Imaging
Guermazi, Ali; Omoumi, Patrick; Tordjman, Mickael; Fritz, Jan; Kijowski, Richard; Regnard, Nor-Eddine; Carrino, John; Kahn, Charles E; Knoll, Florian; Rueckert, Daniel; Roemer, Frank W; Hayashi, Daichi
While musculoskeletal imaging volumes are increasing, there is a relative shortage of subspecialized musculoskeletal radiologists to interpret the studies. Will artificial intelligence (AI) be the solution? For AI to be the solution, the wide implementation of AI-supported data acquisition methods in clinical practice requires establishing trusted and reliable results. This implementation will demand close collaboration between core AI researchers and clinical radiologists. Upon successful clinical implementation, a wide variety of AI-based tools can improve the musculoskeletal radiologist's workflow by triaging imaging examinations, helping with image interpretation, and decreasing the reporting time. Additional AI applications may also be helpful for business, education, and research purposes if successfully integrated into the daily practice of musculoskeletal radiology. The question is not whether AI will replace radiologists, but rather how musculoskeletal radiologists can take advantage of AI to enhance their expert capabilities.
PMID: 38165245
ISSN: 1527-1315
CID: 5625952
2D versus 3D MRI of osteoarthritis in clinical practice and research
Walter, Sven S; Fritz, Benjamin; Kijowski, Richard; Fritz, Jan
Accurately detecting and characterizing articular cartilage defects is critical in assessing patients with osteoarthritis. While radiography is the first-line imaging modality, magnetic resonance imaging (MRI) is the most accurate for the noninvasive assessment of articular cartilage. Multiple semiquantitative grading systems for cartilage lesions in MRI were developed. The Outerbridge and modified Noyes grading systems are commonly used in clinical practice and for research. Other useful grading systems were developed for research, many of which are joint-specific. Both two-dimensional (2D) and three-dimensional (3D) pulse sequences are used to assess cartilage morphology and biochemical composition. MRI techniques for morphological assessment of articular cartilage can be categorized into 2D and 3D FSE/TSE spin-echo and gradient-recalled echo sequences. T2 mapping is most commonly used to qualitatively assess articular cartilage microstructural composition and integrity, extracellular matrix components, and water content. Quantitative techniques may be able to label articular cartilage alterations before morphological defects are visible. Accurate detection and characterization of shallow low-grade partial and small articular cartilage defects are the most challenging for any technique, but where high spatial resolution 3D MRI techniques perform best. This review article provides a practical overview of commonly used 2D and 3D MRI techniques for articular cartilage assessments in osteoarthritis.
PMID: 36907953
ISSN: 1432-2161
CID: 5735092
Deep learning applications in osteoarthritis imaging
Kijowski, Richard; Fritz, Jan; Deniz, Cem M
Deep learning (DL) is one of the most exciting new areas in medical imaging. This article will provide a review of current applications of DL in osteoarthritis (OA) imaging, including methods used for cartilage lesion detection, OA diagnosis, cartilage segmentation, and OA risk assessment. DL techniques have been shown to have similar diagnostic performance as human readers for detecting and grading cartilage lesions within the knee on MRI. A variety of DL methods have been developed for detecting and grading the severity of knee OA and various features of knee OA on X-rays using standardized classification systems with diagnostic performance similar to human readers. Multiple DL approaches have been described for fully automated segmentation of cartilage and other knee tissues and have achieved higher segmentation accuracy than currently used methods with substantial reductions in segmentation times. Various DL models analyzing baseline X-rays and MRI have been developed for OA risk assessment. These models have shown high diagnostic performance for predicting a wide variety of OA outcomes, including the incidence and progression of radiographic knee OA, the presence and progression of knee pain, and future total knee replacement. The preliminary results of DL applications in OA imaging have been encouraging. However, many DL techniques require further technical refinement to maximize diagnostic performance. Furthermore, the generalizability of DL approaches needs to be further investigated in prospective studies using large image datasets acquired at different institutions with different imaging hardware before they can be implemented in clinical practice and research studies.
PMCID:10409879
PMID: 36759367
ISSN: 1432-2161
CID: 5626272
Image-Guided Radiofrequency Ablation for Joint and Back Pain: Rationales, Techniques, and Results
Gonzalez, Felix M; Huang, Junjian; Fritz, Jan
Image-guided minimally invasive radiofrequency ablation (RFA) of sensory nerves has emerged as a treatment option for pain and swelling associated with advanced symptomatic joint and spine degeneration to bridge the gap between optimal medical therapy and surgical treatments. RFA of articular sensory nerves and the basivertebral nerve use image-guided percutaneous approaches resulting in faster recovery time and minimal risks. The current published evidence indicates clinical effectiveness; however, further research must be performed comparing other conservative treatments with RFA to understand further its role in different clinical settings, such as osteonecrosis. This review article discusses and illustrates the applications of RFA for treating symptomatic joint and spine degeneration.
PMID: 36899068
ISSN: 1432-086x
CID: 5708372