Searched for: in-biosketch:true
person:grosss15
Where's the Vision? The Importance of Visual Outcomes in Neurologic Disorders: The 2021 H. Houston Merritt Lecture
Patil, Sachi A; Grossman, Scott; Kenney, Rachel; Balcer, Laura J; Galetta, Steven
Neurologists have long-recognized the importance of the visual system in the diagnosis and monitoring of neurological disorders. This is particularly true since approximately 50% of the brain's pathways subserve afferent and efferent aspects of vision. During the past 30 years, researchers and clinicians have further refined this concept to include investigation of the visual system for patients with specific neurologic diagnoses, including multiple sclerosis (MS), concussion, Parkinson's disease (PD) and conditions along the spectrum of Alzheimer's disease (AD, mild cognitive impairment [MCI] and subjective cognitive decline [SCD]). This review, highlights the visual "toolbox" that has been developed over the past three decades and beyond to capture both structural and functional aspects of vision in neurologic disease. While the efforts to accelerate the emphasis on structure-function relationships in neurological disorders began with MS during the early 2000's, such investigations have broadened to recognize the need for outcomes of visual pathway structure, function and quality of life for clinical trials of therapies across the spectrum of neurological disorders. This review begins with a patient case study highlighting the importance utilizing the most modern technologies for visual pathway assessment, including optical coherence tomography (OCT). We emphasize that both structural and functional tools for vision testing can be used in parallel to detect what might otherwise be sub-clinical events or markers of visual and, perhaps, more global neurological, decline. Such measures will be critical as clinical trials and therapies become more available across the neurological disease spectrum.
PMID: 36522160
ISSN: 1526-632x
CID: 5382402
Curriculum Innovations: A Comprehensive Teleneurology Curriculum for Neurology Trainees
Han, Steve C; Stainman, Rebecca S; Busis, Neil A; Grossman, Scott N; Thawani, Sujata P; Kurzweil, Arielle M
ORIGINAL:0017001
ISSN: 2771-9979
CID: 5545162
Accuracy of clinical versus oculographic detection of pathological saccadic slowing
Grossman, Scott N; Calix, Rachel; Hudson, Todd; Rizzo, John Ross; Selesnick, Ivan; Frucht, Steven; Galetta, Steven L; Balcer, Laura J; Rucker, Janet C
Saccadic slowing as a component of supranuclear saccadic gaze palsy is an important diagnostic sign in multiple neurologic conditions, including degenerative, inflammatory, genetic, or ischemic lesions affecting brainstem structures responsible for saccadic generation. Little attention has been given to the accuracy with which clinicians correctly identify saccadic slowing. We compared clinician (n = 19) judgements of horizontal and vertical saccade speed on video recordings of saccades (from 9 patients with slow saccades, 3 healthy controls) to objective saccade peak velocity measurements from infrared oculographic recordings. Clinician groups included neurology residents, general neurologists, and fellowship-trained neuro-ophthalmologists. Saccades with normal peak velocities on infrared recordings were correctly identified as normal in 57% (91/171; 171 = 9 videos × 19 clinicians) of clinician decisions; saccades determined to be slow on infrared recordings were correctly identified as slow in 84% (224/266; 266 = 14 videos × 19 clinicians) of clinician decisions. Vertical saccades were correctly identified as slow more often than horizontal saccades (94% versus 74% of decisions). No significant differences were identified between clinician training levels. Reliable differentiation between normal and slow saccades is clinically challenging; clinical performance is most accurate for detection of vertical saccade slowing. Quantitative analysis of saccade peak velocities enhances accurate detection and is likely to be especially useful for detection of mild saccadic slowing.
PMID: 36183516
ISSN: 1878-5883
CID: 5359142
MICK (Mobile Integrated Cognitive Kit) app: Feasibility of an accessible tablet-based rapid picture and number naming task for concussion assessment in a division 1 college football cohort
Bell, Carter A; Rice, Lionel; Balcer, Marc J; Pearson, Randolph; Penning, Brett; Alexander, Aubrey; Roskelly, Jensyn; Nogle, Sally; Tomczyk, Chris P; Tracey, Allie J; Loftin, Megan C; Pollard-McGrandy, Alyssa M; Zynda, Aaron J; Covassin, Tracey; Park, George; Rizzo, John-Ross; Hudson, Todd; Rucker, Janet C; Galetta, Steven L; Balcer, Laura; Kaufman, David I; Grossman, Scott N
Although visual symptoms are common following concussion, quantitative measures of visual function are missing from concussion evaluation protocols on the athletic sideline. For the past half century, rapid automatized naming (RAN) tasks have demonstrated promise as quantitative neuro-visual assessment tools in the setting of head trauma and other disorders but have been previously limited in accessibility and scalability. The Mobile Interactive Cognitive Kit (MICK) App is a digital RAN test that can be downloaded on most mobile devices and can therefore provide a quantitative measure of visual function anywhere, including the athletic sideline. This investigation examined the feasibility of MICK App administration in a cohort of Division 1 college football players. Participants (n = 82) from a National Collegiate Athletic Association (NCAA) Division 1 football team underwent baseline testing on the MICK app. Total completion times of RAN tests on the MICK app were recorded; magnitudes of best time scores and between-trial learning effects were determined by paired t-test. Consistent with most timed performance measures, there were significant learning effects between the two baseline trials for both RAN tasks on the MICK app: Mobile Universal Lexicon Evaluation System (MULES) (p < 0.001, paired t-test, mean improvement 13.3 s) and the Staggered Uneven Number (SUN) (p < 0.001, mean improvement 3.3 s). This study demonstrated that the MICK App can be feasibly administered in the setting of pre-season baseline testing in a Division I environment. These data provide a foundation for post-injury sideline testing that will include comparison to baseline in the setting of concussion.
PMID: 36208585
ISSN: 1878-5883
CID: 5351822
Training in Neurology: Objective Structured Clinical Examination Case to Teach and Model Feedback Skills in Neurology Residency
LaRocque, Joshua J; Grossman, Scott; Kurzweil, Arielle M; Lewis, Ariane; Zabar, Sondra; Balcer, Laura; Galetta, Steven L; Zhang, Cen
We describe an educational intervention for neurology residents aimed at developing feedback skills. An objective structured clinical examination case was designed to simulate the provision of feedback to a medical student. After the simulated case session, residents received structured, individualized feedback on their performance and then participated in a group discussion about feedback methods. Survey data were collected from the standardized medical student regarding residents' performance and from residents for assessments of their performance and of the OSCE case. This manuscript aims to describe this educational intervention and to demonstrate the feasibility of this approach for feedback skills development.
PMID: 35169006
ISSN: 1526-632x
CID: 5163442
The MICK (Mobile integrated cognitive kit) app: Digital rapid automatized naming for visual assessment across the spectrum of neurological disorders
Park, George; Balcer, Marc J; Hasanaj, Lisena; Joseph, Binu; Kenney, Rachel; Hudson, Todd; Rizzo, John-Ross; Rucker, Janet C; Galetta, Steven L; Balcer, Laura J; Grossman, Scott N
OBJECTIVE:Rapid automatized naming (RAN) tasks have been utilized for decades to evaluate neurological conditions. Time scores for the Mobile Universal Lexicon Evaluation System (MULES, rapid picture naming) and Staggered Uneven Number (SUN, rapid number naming) are prolonged (worse) with concussion, mild cognitive impairment, multiple sclerosis and Parkinson's disease. The purpose of this investigation was to compare paper/pencil versions of MULES and SUN with a new digitized format, the MICK app. METHODS:Participants (healthy office-based volunteers, professional women's hockey players), completed two trials of the MULES and SUN tests on both platforms (tablet, paper/pencil). The order of presentation of the testing platforms was randomized. Between-platform variability was calculated using the two-way random-effects intraclass correlation coefficient (ICC). RESULTS:Among 59 participants (median age 32, range 22-83), no significant differences were observed for comparisons of mean best scores for the paper/pencil versus MICK app platforms, counterbalanced for order of administration (PÂ =Â 0.45 for MULES, PÂ =Â 0.50 for SUN, linear regression). ICCs for agreement between the MICK and paper/pencil tests were 0.92 (95% CI 0.86, 0.95) for MULES and 0.94 (95% CI 0.89, 0.96) for SUN, representing excellent levels of agreement. Inter-platform differences did not vary systematically across the range of average best time score for either test. CONCLUSION/CONCLUSIONS:The MICK app for digital administration of MULES and SUN demonstrates excellent agreement of time scores with paper/pencil testing. The computerized app allows for greater accessibility and scalability in neurological diseases, inclusive of remote monitoring. Sideline testing for sports-related concussion may also benefit from this technology.
PMID: 35038658
ISSN: 1878-5883
CID: 5131412
Proceedings of the 2020 Epilepsy Foundation Pipeline Conference: Emerging Drugs and Devices
Boada, Christina M; Grossman, Scott N; Grzeskowiak, Caitlin L; Dumanis, Sonya; French, Jacqueline A
From August 27-28, 2020 the Epilepsy Foundation hosted the Pipeline Conference, exploring emerging issues related to antiepileptic drug and device development. The conference featured epilepsy therapeutic companies and academic laboratories developing drugs for focal epilepsies, innovations for rare and ultra-rare diseases, and devices both in clinical trials and approved for use. In this paper, we outline the virtual presentations by the authors, including novel data from their development pipeline.
PMID: 34731723
ISSN: 1525-5069
CID: 5038172
HIV-Associated Rapidly Progressive Lymphoma of the Cavernous Sinus
Kvernland, Alexandra; Grossman, Scott N; Levitan, Valeriya; Gold, Doria; Galetta, Steven L
PMID: 33870944
ISSN: 1536-5166
CID: 4846742
Clinical Reasoning: A 29-Year-Old Man With Fevers and Rapidly Progressive Cranial Neuropathies
Dessy, Alexa; Berger, Stephen; Kumar, Arooshi; Grossman, Scott; Cardiel, Myrna; Galetta, Steven
PMID: 33893206
ISSN: 1526-632x
CID: 4858812
Practical Approach to the Tele-Neuro-Ophthalmology and Neuro-Otology Visits: Instructional Videos
Calix, Rachel; Grossman, Scott N; Rasool, Nailyn; Small, Leslie; Cho, Catherine; Galetta, Steven L; Balcer, Laura J; Rucker, Janet C
ABSTRACT/UNASSIGNED:A collection of instructional videos that illustrate a step by step approach to tele-neuro-ophthalmology and neuro-otology visits. These videos provide instruction for patient preparation for their video visit, patient and provider interface with an electronic medical record associated video platform, digital applications to assist with vision testing, and practical advice for detailed remote neuro-ophthalmologic and neuro-otologic examinations.
PMID: 33587534
ISSN: 1536-5166
CID: 4786512