Searched for: in-biosketch:true
person:mannd01
Leveraging Machine Learning to Develop Digital Engagement Phenotypes of Users in a Digital Diabetes Prevention Program: Evaluation Study
Rodriguez, Danissa V; Chen, Ji; Viswanadham, Ratnalekha V N; Lawrence, Katharine; Mann, Devin
BACKGROUND:Digital diabetes prevention programs (dDPPs) are effective "digital prescriptions" but have high attrition rates and program noncompletion. To address this, we developed a personalized automatic messaging system (PAMS) that leverages SMS text messaging and data integration into clinical workflows to increase dDPP engagement via enhanced patient-provider communication. Preliminary data showed positive results. However, further investigation is needed to determine how to optimize the tailoring of support technology such as PAMS based on a user's preferences to boost their dDPP engagement. OBJECTIVE:This study evaluates leveraging machine learning (ML) to develop digital engagement phenotypes of dDPP users and assess ML's accuracy in predicting engagement with dDPP activities. This research will be used in a PAMS optimization process to improve PAMS personalization by incorporating engagement prediction and digital phenotyping. This study aims (1) to prove the feasibility of using dDPP user-collected data to build an ML model that predicts engagement and contributes to identifying digital engagement phenotypes, (2) to describe methods for developing ML models with dDPP data sets and present preliminary results, and (3) to present preliminary data on user profiling based on ML model outputs. METHODS:Using the gradient-boosted forest model, we predicted engagement in 4 dDPP individual activities (physical activity, lessons, social activity, and weigh-ins) and general activity (engagement in any activity) based on previous short- and long-term activity in the app. The area under the receiver operating characteristic curve, the area under the precision-recall curve, and the Brier score metrics determined the performance of the model. Shapley values reflected the feature importance of the models and determined what variables informed user profiling through latent profile analysis. RESULTS:We developed 2 models using weekly and daily DPP data sets (328,821 and 704,242 records, respectively), which yielded predictive accuracies above 90%. Although both models were highly accurate, the daily model better fitted our research plan because it predicted daily changes in individual activities, which was crucial for creating the "digital phenotypes." To better understand the variables contributing to the model predictor, we calculated the Shapley values for both models to identify the features with the highest contribution to model fit; engagement with any activity in the dDPP in the last 7 days had the most predictive power. We profiled users with latent profile analysis after 2 weeks of engagement (Bayesian information criterion=-3222.46) with the dDPP and identified 6 profiles of users, including those with high engagement, minimal engagement, and attrition. CONCLUSIONS:Preliminary results demonstrate that applying ML methods with predicting power is an acceptable mechanism to tailor and optimize messaging interventions to support patient engagement and adherence to digital prescriptions. The results enable future optimization of our existing messaging platform and expansion of this methodology to other clinical domains. TRIAL REGISTRATION/BACKGROUND:ClinicalTrials.gov NCT04773834; https://www.clinicaltrials.gov/ct2/show/NCT04773834. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID)/UNASSIGNED:RR2-10.2196/26750.
PMCID:11041485
PMID: 38875579
ISSN: 2817-1705
CID: 5669522
Quantifying the impact of telemedicine and patient medical advice request messages on physicians' work-outside-work
Mandal, Soumik; Wiesenfeld, Batia M; Mann, Devin M; Szerencsy, Adam C; Iturrate, Eduardo; Nov, Oded
The COVID-19 pandemic has boosted digital health utilization, raising concerns about increased physicians' after-hours clinical work ("work-outside-work"). The surge in patients' digital messages and additional time spent on work-outside-work by telemedicine providers underscores the need to evaluate the connection between digital health utilization and physicians' after-hours commitments. We examined the impact on physicians' workload from two types of digital demands - patients' messages requesting medical advice (PMARs) sent to physicians' inbox (inbasket), and telemedicine. Our study included 1716 ambulatory-care physicians in New York City regularly practicing between November 2022 and March 2023. Regression analyses assessed primary and interaction effects of (PMARs) and telemedicine on work-outside-work. The study revealed a significant effect of PMARs on physicians' work-outside-work and that this relationship is moderated by physicians' specialties. Non-primary care physicians or specialists experienced a more pronounced effect than their primary care peers. Analysis of their telemedicine load revealed that primary care physicians received fewer PMARs and spent less time in work-outside-work with more telemedicine. Specialists faced increased PMARs and did more work-outside-work as telemedicine visits increased which could be due to the difference in patient panels. Reducing PMAR volumes and efficient inbasket management strategies needed to reduce physicians' work-outside-work. Policymakers need to be cognizant of potential disruptions in physicians carefully balanced workload caused by the digital health services.
PMCID:10867011
PMID: 38355913
ISSN: 2398-6352
CID: 5635802
Development of a GenAI-Powered Hypertension Management Assistant: Early Development Phases and Architectural Design
Chapter by: Rodriguez, Danissa V.; Andreadis, Katerina; Chen, Ji; Gonzalez, Javier; Mann, Devin
in: Proceedings - 2024 IEEE 12th International Conference on Healthcare Informatics, ICHI 2024 by
[S.l.] : Institute of Electrical and Electronics Engineers Inc., 2024
pp. 350-359
ISBN: 9798350383737
CID: 5716482
Ambulatory antibiotic prescription rates for acute respiratory infection rebound two years after the start of the COVID-19 pandemic
Stevens, Elizabeth R; Feldstein, David; Jones, Simon; Twan, Chelsea; Cui, Xingwei; Hess, Rachel; Kim, Eun Ji; Richardson, Safiya; Malik, Fatima M; Tasneem, Sumaiya; Henning, Natalie; Xu, Lynn; Mann, Devin M
BACKGROUND:During the COVID-19 pandemic, acute respiratory infection (ARI) antibiotic prescribing in ambulatory care markedly decreased. It is unclear if antibiotic prescription rates will remain lowered. METHODS:We used trend analyses of antibiotics prescribed during and after the first wave of COVID-19 to determine whether ARI antibiotic prescribing rates in ambulatory care have remained suppressed compared to pre-COVID-19 levels. Retrospective data was used from patients with ARI or UTI diagnosis code(s) for their encounter from 298 primary care and 66 urgent care practices within four academic health systems in New York, Wisconsin, and Utah between January 2017 and June 2022. The primary measures included antibiotic prescriptions per 100 non-COVID ARI encounters, encounter volume, prescribing trends, and change from expected trend. RESULTS:At baseline, during and after the first wave, the overall ARI antibiotic prescribing rates were 54.7, 38.5, and 54.7 prescriptions per 100 encounters, respectively. ARI antibiotic prescription rates saw a statistically significant decline after COVID-19 onset (step change -15.2, 95% CI: -19.6 to -4.8). During the first wave, encounter volume decreased 29.4% and, after the first wave, remained decreased by 188%. After the first wave, ARI antibiotic prescription rates were no longer significantly suppressed from baseline (step change 0.01, 95% CI: -6.3 to 6.2). There was no significant difference between UTI antibiotic prescription rates at baseline versus the end of the observation period. CONCLUSIONS:The decline in ARI antibiotic prescribing observed after the onset of COVID-19 was temporary, not mirrored in UTI antibiotic prescribing, and does not represent a long-term change in clinician prescribing behaviors. During a period of heightened awareness of a viral cause of ARI, a substantial and clinically meaningful decrease in clinician antibiotic prescribing was observed. Future efforts in antibiotic stewardship may benefit from continued study of factors leading to this reduction and rebound in prescribing rates.
PMCID:11198751
PMID: 38917147
ISSN: 1932-6203
CID: 5675032
Remote Patient Monitoring for Management of Diabetes Mellitus in Pregnancy Is Associated With Improved Maternal and Neonatal Outcomes
Kantorowska, Agata; Cohen, Koral; Oberlander, Maxwell; Jaysing, Anna R.; Akerman, Meredith B.; Wise, Anne Marie; Mann, Devin M.; Testa, Paul A.; Chavez, Martin R.; Vintzileos, Anthony M.; Heo, Hye J.
SCOPUS:85180013996
ISSN: 0029-7828
CID: 5620962
Reducing prescribing of antibiotics for acute respiratory infections using a frontline nurse-led EHR-Integrated clinical decision support tool: protocol for a stepped wedge randomized control trial
Stevens, Elizabeth R; Agbakoba, Ruth; Mann, Devin M; Hess, Rachel; Richardson, Safiya I; McGinn, Thomas; Smith, Paul D; Halm, Wendy; Mundt, Marlon P; Dauber-Decker, Katherine L; Jones, Simon A; Feldthouse, Dawn M; Kim, Eun Ji; Feldstein, David A
BACKGROUND:Overprescribing of antibiotics for acute respiratory infections (ARIs) remains a major issue in outpatient settings. Use of clinical prediction rules (CPRs) can reduce inappropriate antibiotic prescribing but they remain underutilized by physicians and advanced practice providers. A registered nurse (RN)-led model of an electronic health record-integrated CPR (iCPR) for low-acuity ARIs may be an effective alternative to address the barriers to a physician-driven model. METHODS:Following qualitative usability testing, we will conduct a stepped-wedge practice-level cluster randomized controlled trial (RCT) examining the effect of iCPR-guided RN care for low acuity patients with ARI. The primary hypothesis to be tested is: Implementation of RN-led iCPR tools will reduce antibiotic prescribing across diverse primary care settings. Specifically, this study aims to: (1) determine the impact of iCPRs on rapid strep test and chest x-ray ordering and antibiotic prescribing rates when used by RNs; (2) examine resource use patterns and cost-effectiveness of RN visits across diverse clinical settings; (3) determine the impact of iCPR-guided care on patient satisfaction; and (4) ascertain the effect of the intervention on RN and physician burnout. DISCUSSION:This study represents an innovative approach to using an iCPR model led by RNs and specifically designed to address inappropriate antibiotic prescribing. This study has the potential to provide guidance on the effectiveness of delegating care of low-acuity patients with ARIs to RNs to increase use of iCPRs and reduce antibiotic overprescribing for ARIs in outpatient settings. TRIAL REGISTRATION:ClinicalTrials.gov Identifier: NCT04255303, Registered February 5 2020, https://clinicaltrials.gov/ct2/show/NCT04255303 .
PMCID:10644670
PMID: 37964232
ISSN: 1472-6947
CID: 5631732
Implementing Remote Patient Monitoring of Physical Activity in Clinical Practice
McCarthy, Margaret; Jevotovsky, David; Mann, Devin; Veerubhotla, Akhila; Muise, Eleanor; Whiteson, Jonathan; Rizzo, John Ross
PURPOSE/OBJECTIVE:Remote patient monitoring (RPM) is a tool for patients to share data collected outside of office visits. RPM uses technology and the digital transmission of data to inform clinician decision-making in patient care. Using RPM to track routine physical activity is feasible to operationalize, given contemporary consumer-grade devices that can sync to the electronic health record. Objective monitoring through RPM can be more reliable than patient self-reporting for physical activity. DESIGN AND METHODS/METHODS:This article reports on four pilot studies that highlight the utility and practicality of RPM for physical activity monitoring in outpatient clinical care. Settings include endocrinology, cardiology, neurology, and pulmonology settings. RESULTS:The four pilot use cases discussed demonstrate how RPM is utilized to monitor physical activity, a shift that has broad implications for prediction, prevention, diagnosis, and management of chronic disease and rehabilitation progress. CLINICAL RELEVANCE/CONCLUSIONS:If RPM for physical activity is to be expanded, it will be important to consider that certain populations may face challenges when accessing digital health services. CONCLUSION/CONCLUSIONS:RPM technology provides an opportunity for clinicians to obtain objective feedback for monitoring progress of patients in rehabilitation settings. Nurses working in rehabilitation settings may need to provide additional patient education and support to improve uptake.
PMID: 37723623
ISSN: 2048-7940
CID: 5591172
Considerations for using predictive models that include race as an input variable: The case study of lung cancer screening
Stevens, Elizabeth R; Caverly, Tanner; Butler, Jorie M; Kukhareva, Polina; Richardson, Safiya; Mann, Devin M; Kawamoto, Kensaku
Indiscriminate use of predictive models incorporating race can reinforce biases present in source data and lead to an exacerbation of health disparities. In some countries, such as the United States, there is therefore a push to remove race from prediction models; however, there are still many prediction models that use race as an input. Biomedical informaticists who are given the responsibility of using these predictive models in healthcare environments are likely to be faced with questions like how to deal with race covariates in these models. Thus, there is a need for a pragmatic framework to help model users think through how to include race in their chosen model so as to avoid inadvertently exacerbating disparities. In this paper, we use the case study of lung cancer screening to propose a simple framework to guide how model users can approach the use (or non-use) of race inputs in the predictive models they are tasked with leveraging in electronic health records and clinical workflows.
PMID: 37844677
ISSN: 1532-0480
CID: 5609662
Centering health equity in large language model deployment
Singh, Nina; Lawrence, Katharine; Richardson, Safiya; Mann, Devin M
PMCID:10597518
PMID: 37874780
ISSN: 2767-3170
CID: 5736252
Opening the Black Box of an mHealth Patient-Reported Outcome Tool for Diabetes Self-Management: Interview Study Among Patients With Type 2 Diabetes
Marini, Christina; Cruz, Jocelyn; Payano, Leydi; Flores, Ronaldo Patino; Arena, Gina-Maria; Mandal, Soumik; Leven, Eric; Mann, Devin; Schoenthaler, Antoinette
BACKGROUND:Mobile health (mHealth) tools are used to collect data on patient-reported outcomes (PROs) and facilitate the assessment of patients' self-management behaviors outside the clinic environment. Despite the high availability of mHealth diabetes tools, there is a lack of understanding regarding the underlying reasons why these mHealth PRO tools succeed or fail in terms of changing patients' self-management behaviors. OBJECTIVE:This study aims to identify the factors that drive engagement with an mHealth PRO tool and facilitate patients' adoption of self-management behaviors, as well as elicit suggestions for improvement. METHODS:) levels and adherence to self-management behaviors at 12 months among patients with uncontrolled type 2 diabetes. Patients randomized to i-Matter participated in semistructured interviews about their experiences at the 3-, 6-, 9-, and 12-month study visits. A qualitative analysis of the interviews was conducted by 2 experienced qualitative researchers using conventional qualitative content analysis. RESULTS:The sample comprised 71 patients, of whom 67 (94%) completed at least one interview (n=48, 72% female patients; n=25, 37% identified as African American or Black; mean age 56.65 [SD 9.79] years). We identified 4 overarching themes and 6 subthemes. Theme 1 showed that the patients' reasons for engagement with i-Matter were multifactorial. Patients were driven by internal motivating factors that bolstered their engagement and helped them feel accountable for their diabetes (subtheme 1) and external motivating factors that helped to serve as reminders to be consistent with their self-management behaviors (subtheme 2). Theme 2 revealed that the use of i-Matter changed patients' attitudes toward their disease and their health behaviors in 2 ways: patients developed more positive attitudes about their condition and their ability to effectively self-manage it (subtheme 3), and they also developed a better awareness of their current behaviors, which motivated them to adopt healthier lifestyle behaviors (subtheme 4). Theme 3 showed that patients felt more committed to their health as a result of using i-Matter. Theme 4 highlighted the limitations of i-Matter, which included its technical design (subtheme 5) and the need for more resources to support the PRO data collected and shared through the tool (subtheme 6). CONCLUSIONS:This study isolated internal and external factors that prompted patients to change their views about their diabetes, become more engaged with the intervention and their health, and adopt healthy behaviors. These behavioral mechanisms provide important insights to drive future development of mHealth interventions that could lead to sustained behavior change.
PMCID:10548328
PMID: 37725427
ISSN: 2561-326x
CID: 5735252