Searched for: in-biosketch:true
person:romw01
Lung Cancer And Lung Microbiome [Meeting Abstract]
Tsay, JJ; Clemente, J; Lhakhang, T; Li, Y; Yie, T-A; Wu, BG; Kapoor, B; Wang, J; Sterman, DH; Heguy, A; Rom, WN; Blaser, M; Segal, LN
ISI:000400372500002
ISSN: 1535-4970
CID: 2591562
Randomised, double-blind, placebo-controlled trial with azithromycin selects for anti-inflammatory microbial metabolites in the emphysematous lung
Segal, Leopoldo N; Clemente, Jose C; Wu, Benjamin G; Wikoff, William R; Gao, Zhan; Li, Yonghua; Ko, Jane P; Rom, William N; Blaser, Martin J; Weiden, Michael D
INTRODUCTION: Azithromycin (AZM) reduces pulmonary inflammation and exacerbations in patients with COPD having emphysema. The antimicrobial effects of AZM on the lower airway microbiome are not known and may contribute to its beneficial effects. Here we tested whether AZM treatment affects the lung microbiome and bacterial metabolites that might contribute to changes in levels of inflammatory cytokines in the airways. METHODS: 20 smokers (current or ex-smokers) with emphysema were randomised to receive AZM 250 mg or placebo daily for 8 weeks. Bronchoalveolar lavage (BAL) was performed at baseline and after treatment. Measurements performed in acellular BAL fluid included 16S rRNA gene sequences and quantity; 39 cytokines, chemokines and growth factors and 119 identified metabolites. The response to lipopolysaccharide (LPS) by alveolar macrophages after ex-vivo treatment with AZM or bacterial metabolites was assessed. RESULTS: Compared with placebo, AZM did not alter bacterial burden but reduced alpha-diversity, decreasing 11 low abundance taxa, none of which are classical pulmonary pathogens. Compared with placebo, AZM treatment led to reduced in-vivo levels of chemokine (C-X-C) ligand 1 (CXCL1), tumour necrosis factor (TNF)-alpha, interleukin (IL)-13 and IL-12p40 in BAL, but increased bacterial metabolites including glycolic acid, indol-3-acetate and linoleic acid. Glycolic acid and indol-3-acetate, but not AZM, blunted ex-vivo LPS-induced alveolar macrophage generation of CXCL1, TNF-alpha, IL-13 and IL-12p40. CONCLUSION: AZM treatment altered both lung microbiota and metabolome, affecting anti-inflammatory bacterial metabolites that may contribute to its therapeutic effects. TRIAL REGISTRATION NUMBER: NCT02557958.
PMCID:5329050
PMID: 27486204
ISSN: 1468-3296
CID: 2199482
Identification of autoantibodies to ECH1 and HNRNPA2B1 as potential biomarkers in the early detection of lung cancer
Dai, Liping; Li, Jitian; Tsay, Jun-Chieh J; Yie, Ting-An; Munger, John S; Pass, Harvey; Rom, William N; Tan, Eng M; Zhang, Jian-Ying
Identification of biomarkers for early detection of lung cancer (LC) is important, in turn leading to more effective treatment and reduction of mortality. Serological proteome analysis (SERPA) was used to identify proteins around 34 kD as ECH1 and HNRNPA2B1, which had been recognized by serum autoantibody from 25 LC patients. In the validation study, including 90 sera from LC patients and 89 sera from normal individuals, autoantibody to ECH1 achieved an area under the curve (AUC) of 0.799 with sensitivity of 62.2% and specificity of 95.5% in discriminating LC from normal individuals, and showed negative correlation with tumor size (rs = -0.256, p = 0.023). Autoantibody to HNRNPA2B1 performed an AUC of 0.874 with sensitivity of 72.2% and specificity of 95.5%, and showed negative correlation with lymph node metastasis (rs = -0.279, p = 0.012). By using longitudinal preclinical samples, autoantibody to ECH1 showed an AUC of 0.763 with sensitivity of 60.0% and specificity of 89.3% in distinguishing early stage LC from matched normal controls, and elevated autoantibody levels could be detected greater than 2 y before LC diagnosis. ECH1 and HNRNPA2B1 are autoantigens that elicit autoimmune responses in LC and their autoantibody can be the potential biomarkers for the early detection of LC.
PMCID:5467997
PMID: 28638733
ISSN: 2162-4011
CID: 2604012
Clinical validation of a blood-based classifier for diagnostic evaluation of asymptomatic individuals with pulmonary nodules
Birse, Charles E; Tomic, Jennifer L; Pass, Harvey I; Rom, William N; Lagier, Robert J
BACKGROUND: The number of pulmonary nodules detected in the US is expected to increase substantially following recent recommendations for nationwide CT-based lung cancer screening. Given the low specificity of CT screening, non-invasive adjuvant methods are needed to differentiate cancerous lesions from benign nodules to help avoid unnecessary invasive procedures in the asymptomatic population. We have constructed a serum-based multi-biomarker panel and assessed its clinical accuracy in a retrospective analysis of samples collected from participants with suspicious radiographic findings in the Prostate, Lung, Chest and Ovarian (PLCO) cancer screening trial. METHODS: Starting with a set of 9 candidate biomarkers, we identified 8 that exhibited limited pre-analytical variability with increasing clotting time, a key pre-analytical variable associated with the collection of serum. These 8 biomarkers were evaluated in a training study consisting of 95 stage I NSCLC patients and 186 smoker controls where a 5-biomarker pulmonary nodule classifier (PNC) was selected. The clinical accuracy of the PNC was determined in a blinded study of asymptomatic individuals comprising 119 confirmed malignant nodule cases and 119 benign nodule controls selected from the PLCO screening trial. RESULTS: A PNC comprising 5 biomarkers: CEA, CYFRA 21-1, OPN, SCC, and TFPI, was selected in the training study. In an independent validation study, the PNC resolved lung cancer cases from benign nodule controls with an AUC of 0.653 (p < 0.0001). CEA and CYFRA 21-1, two of the markers included in the PNC, also accurately distinguished malignant lesions from benign controls. CONCLUSIONS: A 5-biomarker blood test has been developed for the diagnostic evaluation of asymptomatic individuals with solitary pulmonary nodules.
PMCID:5498919
PMID: 28694742
ISSN: 1542-6416
CID: 2630242
Distal airway dysfunction identifies pulmonary inflammation in asymptomatic smokers
Berger, Kenneth I; Pradhan, Deepak R; Goldring, Roberta M; Oppenheimer, Beno W; Rom, William N; Segal, Leopoldo N
Smoking induced inflammation leads to distal airway destruction. However, the relationship between distal airway dysfunction and inflammation remains unclear, particularly in smokers prior to the development of airway obstruction. Seven normal controls and 16 smokers without chronic obstructive pulmonary disease (COPD) were studied. Respiratory function was assessed using the forced oscillation technique (FOT). Abnormal FOT was defined as elevated resistance at 5 Hz (R5). Parameters reflecting distal lung function included frequency dependence of resistance (R5-20) and dynamic elastance (X5). Inflammation was quantified in concentrated bronchoalveolar lavage utilising cell count differential and cytokines expressed as concentration per mL epithelial lining fluid. All control subjects and seven smokers had normal R5. Nine smokers had elevated R5 with abnormal R5-20 and X5, indicating distal lung dysfunction. The presence of abnormal FOT was associated with two-fold higher lymphocyte and neutrophil counts (p<0.025) and with higher interleukin (IL)-8, eotaxin and fractalkine levels (p<0.01). Reactivity of R5-20 and X5 correlated with levels of IL-8, eotaxin, fractalkine, IL-12p70 and transforming growth factor-alpha (r>0.47, p<0.01). Distal airway dysfunction in smokers without COPD identifies the presence of distal lung inflammation that parallel reported observations in established COPD. These findings were not evident on routine pulmonary function testing and may allow the identification of smokers at risk of progression to COPD.
PMCID:5165724
PMID: 27995132
ISSN: 2312-0541
CID: 2372652
Autoantibodies against tumor-associated antigens in the early detection of lung cancer
Dai, Liping; Tsay, Jun-Chieh J; Li, Jitian; Yie, Ting-An; Munger, John S; Pass, Harvey; Rom, William N; Zhang, Yi; Tan, Eng M; Zhang, Jian-Ying
OBJECTIVES: Autoantibodies against tumor-associated antigens (TAAs) identified in patients with advanced lung cancer may be detected in subjects with early lung cancer or even predate the diagnosis. The purpose of this study is to address the temporal relationship between lung cancer development and serum autoantibody response. MATERIALS AND METHODS: Two cohorts of patients with newly diagnosed lung cancer were included. The first cohort included 90 sera from patients with lung cancer (Stages I-III) and 89 normal control sera. In the second cohort, 93 serial serum samples from 25 patients with CT-scan screen-detected stage I lung cancer were collected before the diagnosis of lung cancer (average 32 months) and 56 controls were matched on age, gender, and smoking. Autoantibody levels were measured by immunoassay. RESULTS: Measurement of autoantibodies against seven TAAs (14-3-3zeta, c-Myc, MDM2, NPM1, p16, p53 and cyclin B1) individually could discriminate lung cancer patients from normal individuals in the first cohort and the area under curve (AUC) was 0.863 based on a panel of seven autoantibodies, with sensitivity of 68.9% and specificity of 79.5%. Autoantibodies in serial pre-diagnostic serum samples against the same panel of seven TAAs were detected prior to lung cancer diagnosis with sensitivity of 76.0% and specificity of 73.2% (AUC) (95%CI): 0.885 (0.797-0.973)). Elevated autoantibody levels could be detected greater than four years prior to lung cancer diagnosis. CONCLUSION: A panel of seven TAAs may enhance the early detection of lung cancer, consistent with a humoral immune response to TAAs that can be detected months to years prior to the diagnosis.
PMID: 27565936
ISSN: 1872-8332
CID: 2221692
Progression from respiratory dysfunction to failure in late-onset Pompe disease
Berger, Kenneth I; Chan, Yinny; Rom, William N; Oppenheimer, Beno W; Goldring, Roberta M
To identify determinants of respiratory disease progression in late-onset Pompe disease (LOPD), we studied relationships between pulmonary function, respiratory muscle strength, gas exchange, and respiratory control. Longitudinal evaluation of 22 LOPD patients (mean age 38 years) was performed at 6-month intervals for 6-24 months. Measurements included vital capacity (VC), maximum inspiratory pressure (MIP), maximum expiratory pressure (MEP), tidal volume (VT), dead space (VD), and ventilatory response to CO2. Although reduction in VC correlated with MIP and MEP (p < 0.0001), some patients had normal VC despite reduced MIP and MEP (5 [23%] and 9 [41%] patients, respectively). Daytime hypercapnia was associated with reduced VC (<60% predicted) and MIP (<40% predicted). Moreover, chronic hypercapnia was associated with elevated VD/VT (>/=0.44) due to falling VT ( approximately 300 ml), compatible with reduced efficiency of CO2 clearance. The presence of hypercapnia and/or ventilatory support was associated with reduced ventilatory responsiveness to CO2 (=0.7 l/min/mmHg). We conclude that daytime hypercapnia, an indicator of chronic respiratory failure, is tightly linked to the degree of respiratory muscle weakness and severity of pulmonary dysfunction in LOPD patients. Reductions in CO2 clearance efficiency and ventilatory responsiveness may contribute to the development of chronic daytime hypercapnia.
PMID: 27297666
ISSN: 1873-2364
CID: 2145062
Extracellular mRNA Detected by Tethered Lipoplex Nanoparticle Biochip for Lung Adenocarcinoma Detection
Lee, L James; Yang, Zhaogang; Rahman, Mohammad; Ma, Junyu; Kwak, Kwang Joo; McElroy, Joseph; Shilo, Konstantin; Goparaju, Chandra; Yu, Lianbo; Rom, William; Kim, Taek-Kyun; Wu, Xiaogang; He, Yuqing; Wang, Kai; Pass, Harvey I; Nana-Sinkam, S Patrick
PMCID:4910892
PMID: 27304243
ISSN: 1535-4970
CID: 2143342
Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype
Segal, Leopoldo N; Clemente, Jose C; Tsay, Jun-Chieh J; Koralov, Sergei B; Keller, Brian C; Wu, Benjamin G; Li, Yonghua; Shen, Nan; Ghedin, Elodie; Morris, Alison; Diaz, Phillip; Huang, Laurence; Wikoff, William R; Ubeda, Carles; Artacho, Alejandro; Rom, William N; Sterman, Daniel H; Collman, Ronald G; Blaser, Martin J; Weiden, Michael D
Microaspiration is a common phenomenon in healthy subjects, but its frequency is increased in chronic inflammatory airway diseases, and its role in inflammatory and immune phenotypes is unclear. We have previously demonstrated that acellular bronchoalveolar lavage samples from half of the healthy people examined are enriched with oral taxa (here called pneumotypeSPT) and this finding is associated with increased numbers of lymphocytes and neutrophils in bronchoalveolar lavage. Here, we have characterized the inflammatory phenotype using a multi-omic approach. By evaluating both upper airway and acellular bronchoalveolar lavage samples from 49 subjects from three cohorts without known pulmonary disease, we observed that pneumotypeSPT was associated with a distinct metabolic profile, enhanced expression of inflammatory cytokines, a pro-inflammatory phenotype characterized by elevated Th-17 lymphocytes and, conversely, a blunted alveolar macrophage TLR4 response. The cellular immune responses observed in the lower airways of humans with pneumotypeSPT indicate a role for the aspiration-derived microbiota in regulating the basal inflammatory status at the pulmonary mucosal surface.
PMCID:5010013
PMID: 27572644
ISSN: 2058-5276
CID: 2231952
Risk Factors Associated With Quantitative Evidence of Lung Emphysema and Fibrosis in an HIV-Infected Cohort
Leader, Joseph K; Crothers, Kristina; Huang, Laurence; King, Mark A; Morris, Alison; Thompson, Bruce W; Flores, Sonia C; Drummond, Michael B; Rom, William N; Diaz, Philip T
INTRODUCTION: The disease spectrum for HIV-infected individuals has shifted toward comorbid non-AIDS conditions including chronic lung disease, but quantitative image analysis of lung disease has not been performed. OBJECTIVES: To quantify the prevalence of structural changes of the lung indicating emphysema or fibrosis on radiographic examination. METHODS: A cross-sectional analysis of 510 HIV-infected participants in the multicenter Lung-HIV study was performed. Data collected included demographics, biological markers of HIV, pulmonary function testing, and chest computed tomographic examinations. Emphysema and fibrosis-like changes were quantified on computed tomographic images based on threshold approaches. RESULTS: In our cohort, 69% was on antiretroviral therapy, 13% had a current CD4 cell count less than 200 cells per microliter, 39% had an HIV viral load greater than 500 copies per milliliter, and 25% had at least a trace level of emphysema (defined as >2.5% of voxels <-950HU). Trace emphysema was significantly correlated with age, smoking, and pulmonary function. Neither current CD4 cell count nor HIV viral load was significantly correlated with emphysema. Fibrosis-like changes were detected in 29% of the participants and were significantly correlated with HIV viral load (Pearson correlation coefficient = 0.210; P < 0.05); current CD4 cell count was not associated with fibrosis. In multivariable analyses including age, race, and smoking status, HIV viral load remained significantly correlated with fibrosis-like changes (coefficient = 0.107; P = 0.03). CONCLUSIONS: A higher HIV viral load was significantly associated with fibrosis-like changes, possibly indicating early interstitial lung disease, but emphysematous changes were not related to current CD4 cell count or HIV viral load.
PMCID:4770858
PMID: 26914911
ISSN: 1944-7884
CID: 1965502