Searched for: in-biosketch:true
person:sadowm01
Absence of Apolipoprotein E Exacerbates Prion Pathology and Promote Microglial Mediated Neurodegeneration
Lizinczyk, Anita M; Pankiewicz, Joanna E; Franco, Leor A; Diaz, Jenny R; Ariza, Mtichell Marta; Sadowski, Martin J
ORIGINAL:0016570
ISSN: 1552-5279
CID: 5435762
Peroxiredoxin 6 Regulates Glia Toxicity in Tau Mediated Neurodegeneration
Pankiewicz, Joanna E; Lizinczyk, Anita M; Franco, Leor A; Sadowski, Martin J
ORIGINAL:0016569
ISSN: 1552-5279
CID: 5435752
Functional Outcomes of a Comprehensive, Individualized, Person-Centered Management Program in Advanced Alzheimer"™s Disease(AD): Results from a 52-Week Randomized Controlled Trial
Kenowsky, Sunnie; Shao, Yongzhao; Zhang, Qiao; Dafflisio, Gianna; Vedvyas, Alok; Vedvyas, Gaurav; Golomb, James B.; Torossian, Carol; Marsh, Karyn; Heller, Sloane; Sadowski, Martin J.; Reisberg, Barry
Background: We conducted a 28-week, single-blind, randomized, controlled trial of the efficacy of Comprehensive, Individualized, Person-Centered Management (CI-PCM) and memantine treatment (Reisberg et al., Dement Geriatr Cogn Disord, 2017) in advanced AD persons. CI-PCM and memantine was approximately 7.5 times more beneficial to AD persons on the Functional Assessment Staging Tool (FAST) (Kenowsky et. al., Alzheimer"™s and Dementia, 2017) than to AD persons who received memantine alone in the memantine FDA approval pivotal trial conducted by Reisberg et. al., (NEJM 2003). We also conducted a 24-week extension study. Herein, we report the difference in functional outcomes between the CI-PCM and Usual Community Care (UCC+FC) groups at 52-weeks on the FAST and the ADCS-ADLSev-Abv. See Figures 1 and 2. Method: After screening, 20 eligible subject-carepartner dyads were randomized equally to the CI-PCM and UCC+FC groups. All 20 dyads completed the 28-week study and entered the 24-week extension study. One subject in the UCC+FC group died during the extension study. The FAST and ADCS-ADLsev-abv were conducted at baseline, and weeks 4, 12, 28, and 52. P values were calculated using the Wilcoxon Mann Whitney test. Result: The mean FAST total score from baseline (6.6±0.1SE) to week 52 (6.5±0.01SE) showed an improvement of functional limitations in the CI-PCM group. The mean FAST total score for the UCC+FC group showed a functional decline from baseline (6.6±0.1SE) to week 52 (6.8±0.1SE), displaying a robustly significant difference between the two groups (p<0.0014). The mean ADCS-ADL-sev-abv total score for the CI-PCM group demonstrated a 20.9% improvement in functioning from baseline (15.3±2.0SE) to week 52 (18.5±2.5SE). The mean ADCS-ADL-sev-abv total score for the UCC+FC group showed a decline of 48.6% from baseline (14.8±2.1SE) to week 52 (7.6±2.3SE), indicating a significant difference between the two groups (p<0.009). Conclusion: The CI-PCM program is the only evidenced-based treatment to date that can significantly improve and reverse functional deterioration in advanced AD persons. The functional success of the CI-PCM program may primarily be attributed to care partners learning to memory coach AD persons to perform daily activities such as bathing, dressing, feeding and toileting themselves, and to become/maintain urinary and fecal continence.
SCOPUS:85144362721
ISSN: 1552-5260
CID: 5393842
Apolipoprotein E4 Effects a Distinct Transcriptomic Profile and Dendritic Arbor Characteristics in Hippocampal Neurons Cultured in vitro
Diaz, Jenny R; Martá-Ariza, Mitchell; Khodadadi-Jamayran, Alireza; Heguy, Adriana; Tsirigos, Aristotelis; Pankiewicz, Joanna E; Sullivan, Patrick M; Sadowski, Martin J
The APOE gene is diversified by three alleles ε2, ε3, and ε4 encoding corresponding apolipoprotein (apo) E isoforms. Possession of the ε4 allele is signified by increased risks of age-related cognitive decline, Alzheimer's disease (AD), and the rate of AD dementia progression. ApoE is secreted by astrocytes as high-density lipoprotein-like particles and these are internalized by neurons upon binding to neuron-expressed apoE receptors. ApoE isoforms differentially engage neuronal plasticity through poorly understood mechanisms. We examined here the effects of native apoE lipoproteins produced by immortalized astrocytes homozygous for ε2, ε3, and ε4 alleles on the maturation and the transcriptomic profile of primary hippocampal neurons. Control neurons were grown in the presence of conditioned media from Apoe -/- astrocytes. ApoE2 and apoE3 significantly increase the dendritic arbor branching, the combined neurite length, and the total arbor surface of the hippocampal neurons, while apoE4 fails to produce similar effects and even significantly reduces the combined neurite length compared to the control. ApoE lipoproteins show no systemic effect on dendritic spine density, yet apoE2 and apoE3 increase the mature spines fraction, while apoE4 increases the immature spine fraction. This is associated with opposing effects of apoE2 or apoE3 and apoE4 on the expression of NR1 NMDA receptor subunit and PSD95. There are 1,062 genes differentially expressed across neurons cultured in the presence of apoE lipoproteins compared to the control. KEGG enrichment and gene ontology analyses show apoE2 and apoE3 commonly activate expression of genes involved in neurite branching, and synaptic signaling. In contrast, apoE4 cultured neurons show upregulation of genes related to the glycolipid metabolism, which are involved in dendritic spine turnover, and those which are usually silent in neurons and are related to cell cycle and DNA repair. In conclusion, our work reveals that lipoprotein particles comprised of various apoE isoforms differentially regulate various neuronal arbor characteristics through interaction with neuronal transcriptome. ApoE4 produces a functionally distinct transcriptomic profile, which is associated with attenuated neuronal development. Differential regulation of neuronal transcriptome by apoE isoforms is a newly identified biological mechanism, which has both implication in the development and aging of the CNS.
PMCID:9099260
PMID: 35572125
ISSN: 1663-4365
CID: 5232812
A predictive model using the mesoscopic architecture of the living brain to detect Alzheimer's disease
Inglese, Marianna; Patel, Neva; Linton-Reid, Kristofer; Loreto, Flavia; Win, Zarni; Perry, Richard J; Carswell, Christopher; Grech-Sollars, Matthew; Crum, William R; Lu, Haonan; Malhotra, Paresh A; ,; Aboagye, Eric O
BACKGROUND:Alzheimer's disease, the most common cause of dementia, causes a progressive and irreversible deterioration of cognition that can sometimes be difficult to diagnose, leading to suboptimal patient care. METHODS:We developed a predictive model that computes multi-regional statistical morpho-functional mesoscopic traits from T1-weighted MRI scans, with or without cognitive scores. For each patient, a biomarker called "Alzheimer's Predictive Vector" (ApV) was derived using a two-stage least absolute shrinkage and selection operator (LASSO). RESULTS:is significantly altered in patients with ADrp-like phenotype. CONCLUSIONS:This new data analytic method demonstrates potential for increasing accuracy of Alzheimer diagnosis.
PMCID:9209493
PMID: 35759330
ISSN: 2730-664x
CID: 5864732
Plasma phosphorylated-tau181 as a predictive biomarker for Alzheimer's amyloid, tau and FDG PET status
Shen, Xue-Ning; Huang, Yu-Yuan; Chen, Shi-Dong; Guo, Yu; Tan, Lan; Dong, Qiang; Yu, Jin-Tai; ,
Plasma phosphorylated-tau181 (p-tau181) showed the potential for Alzheimer's diagnosis and prognosis, but its role in detecting cerebral pathologies is unclear. We aimed to evaluate whether it could serve as a marker for Alzheimer's pathology in the brain. A total of 1189 participants with plasma p-tau181 and PET data of amyloid, tau or FDG PET were included from ADNI. Cross-sectional relationships of plasma p-tau181 with PET biomarkers were tested. Longitudinally, we further investigated whether different p-tau181 levels at baseline predicted different progression of Alzheimer's pathological changes in the brain. We found plasma p-tau181 significantly correlated with brain amyloid (Spearman ρ = 0.45, P < 0.0001), tau (0.25, P = 0.0003), and FDG PET uptakes (-0.37, P < 0.0001), and increased along the Alzheimer's continuum. Individually, plasma p-tau181 could detect abnormal amyloid, tau pathologies and hypometabolism in the brain, similar with or even better than clinical indicators. The diagnostic accuracy of plasma p-tau181 elevated significantly when combined with clinical information (AUC = 0.814 for amyloid PET, 0.773 for tau PET, and 0.708 for FDG PET). Relationships of plasma p-tau181 with brain pathologies were partly or entirely mediated by the corresponding CSF biomarkers. Besides, individuals with abnormal plasma p-tau181 level (>18.85 pg/ml) at baseline had a higher risk of pathological progression in brain amyloid (HR: 2.32, 95%CI 1.32-4.08) and FDG PET (3.21, 95%CI 2.06-5.01) status. Plasma p-tau181 may be a sensitive screening test for detecting brain pathologies, and serve as a predictive biomarker for Alzheimer's pathophysiology.
PMCID:8590691
PMID: 34775468
ISSN: 2158-3188
CID: 5864722
Absence of Apolipoprotein E is associated with exacerbation of prion pathology and promotes microglial neurodegenerative phenotype
Pankiewicz, Joanna E; Lizińczyk, Anita M; Franco, Leor A; Diaz, Jenny R; Martá-Ariza, Mitchell; Sadowski, Martin J
Prion diseases or prionoses are a group of rapidly progressing and invariably fatal neurodegenerative diseases. The pathogenesis of prionoses is associated with self-replication and connectomal spread of PrPSc, a disease specific conformer of the prion protein. Microglia undergo activation early in the course of prion pathogenesis and exert opposing roles in PrPSc mediated neurodegeneration. While clearance of PrPSc and apoptotic neurons have disease-limiting effect, microglia-driven neuroinflammation bears deleterious consequences to neuronal networks. Apolipoprotein (apo) E is a lipid transporting protein with pleiotropic functions, which include controlling of the phagocytic and inflammatory characteristics of activated microglia in neurodegenerative diseases. Despite the significance of microglia in prion pathogenesis, the role of apoE in prionoses has not been established. We showed here that infection of wild type mice with 22L mouse adapted scrapie strain is associated with significant increase in the total brain apoE protein and mRNA levels and also with a conspicuous cell-type shift in the apoE expression. There is reduced expression of apoE in activated astrocytes and marked upregulation of apoE expression by activated microglia. We also showed apoE ablation exaggerates PrPSc mediated neurodegeneration. Apoe-/- mice have shorter disease incubation period, increased load of spongiform lesion, pronounced neuronal loss, and exaggerated astro and microgliosis. Astrocytes of Apoe-/- mice display salient upregulation of transcriptomic markers defining A1 neurotoxic astrocytes while microglia show upregulation of transcriptomic markers characteristic for microglial neurodegenerative phenotype. There is impaired clearance of PrPSc and dying neurons by microglia in Apoe-/- mice along with increased level of proinflammatory cytokines. Our work indicates that apoE absence renders clearance of PrPSc and dying neurons by microglia inefficient, while the excess of neuronal debris promotes microglial neurodegenerative phenotype aggravating the vicious cycle of neuronal death and neuroinflammation.
PMCID:8474943
PMID: 34565486
ISSN: 2051-5960
CID: 5061562
Staging tau pathology with tau PET in Alzheimer's disease: a longitudinal study
Chen, Shi-Dong; Lu, Jia-Ying; Li, Hong-Qi; Yang, Yu-Xiang; Jiang, Jie-Hui; Cui, Mei; Zuo, Chuan-Tao; Tan, Lan; Dong, Qiang; Yu, Jin-Tai; ,
A biological research framework to define Alzheimer' disease with dichotomized biomarker measurement was proposed by National Institute on Aging-Alzheimer's Association (NIA-AA). However, it cannot characterize the hierarchy spreading pattern of tau pathology. To reflect in vivo tau progression using biomarker, we constructed a refined topographic 18F-AV-1451 tau PET staging scheme with longitudinal clinical validation. Seven hundred and thirty-four participants with baseline 18F-AV-1451 tau PET (baseline age 73.9 ± 7.7 years, 375 female) were stratified into five stages by a topographic PET staging scheme. Cognitive trajectories and clinical progression were compared across stages with or without further dichotomy of amyloid status, using linear mixed-effect models and Cox proportional hazard models. Significant cognitive decline was first observed in stage 1 when tau levels only increased in transentorhinal regions. Rates of cognitive decline and clinical progression accelerated from stage 2 to stage 3 and stage 4. Higher stages were also associated with greater CSF phosphorylated tau and total tau concentrations from stage 1. Abnormal tau accumulation did not appear with normal β-amyloid in neocortical regions but prompt cognitive decline by interacting with β-amyloid in temporal regions. Highly accumulated tau in temporal regions independently led to cognitive deterioration. Topographic PET staging scheme have potentials in early diagnosis, predicting disease progression, and studying disease mechanism. Characteristic tau spreading pattern in Alzheimer's disease could be illustrated with biomarker measurement under NIA-AA framework. Clinical-neuroimaging-neuropathological studies in other cohorts are needed to validate these findings.
PMCID:8449785
PMID: 34537810
ISSN: 2158-3188
CID: 5864712
Higher CSF sTNFR1-related proteins associate with better prognosis in very early Alzheimer's disease
Hu, William T; Ozturk, Tugba; Kollhoff, Alexander; Wharton, Whitney; Christina Howell, J; ,
Neuroinflammation is associated with Alzheimer's disease, but the application of cerebrospinal fluid measures of inflammatory proteins may be limited by overlapping pathways and relationships between them. In this work, we measure 15 cerebrospinal proteins related to microglial and T-cell functions, and show them to reproducibly form functionally-related groups within and across diagnostic categories in 382 participants from the Alzheimer's Disease Neuro-imaging Initiative as well participants from two independent cohorts. We further show higher levels of proteins related to soluble tumor necrosis factor receptor 1 are associated with reduced risk of conversion to dementia in the multi-centered (p = 0.027) and independent (p = 0.038) cohorts of people with mild cognitive impairment due to predicted Alzheimer's disease, while higher soluble TREM2 levels associated with slower decline in the dementia stage of Alzheimer's disease. These inflammatory proteins thus provide prognostic information independent of established Alzheimer's markers.
PMCID:8238986
PMID: 34183654
ISSN: 2041-1723
CID: 5864702
Segmented Linear Mixed Model Analysis Reveals Association of the APOEɛ4 Allele with Faster Rate of Alzheimer's Disease Dementia Progression
Richard Chen, X; Shao, Yongzhao; Sadowski, Martin J
BACKGROUND:APOEɛ4 allele carriers present with increased risk for late-onset Alzheimer's disease (AD), show cognitive symptoms at earlier age, and are more likely to transition from mild cognitive impairment (MCI) to dementia but despite this, it remains unclear whether or not the ɛ4 allele controls the rate of disease progression. OBJECTIVE:To determine effects of the ɛ4 allele on rates of cognitive decline and brain atrophy during MCI and dementia stages of AD. METHODS:A segmented linear mixed model was chosen for longitudinal modeling of cognitive and brain volumetric data of 73 ɛ3/ɛ3, 99 ɛ3/ɛ4, and 39 ɛ4/ɛ4 Alzheimer's Disease Neuroimaging Initiative participants who transitioned during the study from MCI to AD dementia. RESULTS:ɛ4 carriers showed faster decline on MMSE, ADAS-11, CDR-SB, and MoCA scales, with the last two measures showing significant ɛ4 allele-dose effects after dementia transition but not during MCI. The ɛ4 effect was more prevalent in younger participants and in females. ɛ4 carriers also demonstrated faster rates of atrophy of the whole brain, the hippocampus, the entorhinal cortex, the middle temporal gyrus, and expansion of the ventricles after transitioning to dementia but not during MCI. CONCLUSION/CONCLUSIONS:Possession of the ɛ4 allele is associated with a faster progression of dementia due to AD. Our observations support the notion that APOE genotype not only controls AD risk but also differentially regulates mechanisms of neurodegeneration underlying disease advancement. Furthermore, our findings carry significance for AD clinical trial design.
PMID: 34120907
ISSN: 1875-8908
CID: 4911232