Searched for: in-biosketch:true
person:shopsb01
Retapamulin Activity Against Pediatric Strains of Mupirocin-resistant Methicillin-resistant Staphylococcus aureus
Patel, Ami B; Lighter, Jennifer; Fulmer, Yi; Copin, Richard; Ratner, Adam J; Shopsin, Bo
Retapamulin activity against 53 isolates obtained from a mupirocin-resistant community-acquired methicillin-resistant Staphylococcus aureus pediatric disease cluster was evaluated using broth microdilution. All strains were susceptible to retapamulin with minimum inhibitory concentrations ≤ 0.5 μg/mL. DNA sequence analysis of rplC and cfr identified one rplC strain variant that did not demonstrate reduced phenotypic susceptibility to retapamulin. These results demonstrate that retapamulin may be a useful alternative therapy for mupirocin-resistant community-acquired methicillin-resistant S. aureus, especially in disease clusters.
PMID: 33657598
ISSN: 1532-0987
CID: 4905682
Genetic variation of staphylococcal LukAB toxin determines receptor tropism
Perelman, Sofya S; James, David B A; Boguslawski, Kristina M; Nelson, Chase W; Ilmain, Juliana K; Zwack, Erin E; Prescott, Rachel A; Mohamed, Adil; Tam, Kayan; Chan, Rita; Narechania, Apurva; Pawline, Miranda B; Vozhilla, Nikollaq; Moustafa, Ahmed M; Kim, Sang Y; Dittmann, Meike; Ekiert, Damian C; Bhabha, Gira; Shopsin, Bo; Planet, Paul J; Koralov, Sergei B; Torres, Victor J
Staphylococcus aureus has evolved into diverse lineages, known as clonal complexes (CCs), which exhibit differences in the coding sequences of core virulence factors. Whether these alterations affect functionality is poorly understood. Here, we studied the highly polymorphic pore-forming toxin LukAB. We discovered that the LukAB toxin variants produced by S. aureus CC30 and CC45 kill human phagocytes regardless of whether CD11b, the previously established LukAB receptor, is present, and instead target the human hydrogen voltage-gated channel 1 (HVCN1). Biochemical studies identified the domain within human HVCN1 that drives LukAB species specificity, enabling the generation of humanized HVCN1 mice with enhanced susceptibility to CC30 LukAB and to bloodstream infection caused by CC30 S. aureus strains. Together, this work advances our understanding of an important S. aureus toxin and underscores the importance of considering genetic variation in characterizing virulence factors and understanding the tug of war between pathogens and the host.
PMID: 33875847
ISSN: 2058-5276
CID: 4846982
Microbial signatures in the lower airways of mechanically ventilated COVID19 patients associated with poor clinical outcome
Sulaiman, Imran; Chung, Matthew; Angel, Luis; Koralov, Sergei; Wu, Benjamin; Yeung, Stephen; Krolikowski, Kelsey; Li, Yonghua; Duerr, Ralf; Schluger, Rosemary; Thannickal, Sara; Koide, Akiko; Rafeq, Samaan; Barnett, Clea; Postelnicu, Radu; Wang, Chang; Banakis, Stephanie; Perez-Perez, Lizzette; Jour, George; Shen, Guomiao; Meyn, Peter; Carpenito, Joseph; Liu, Xiuxiu; Ji, Kun; Collazo, Destiny; Labarbiera, Anthony; Amoroso, Nancy; Brosnahan, Shari; Mukherjee, Vikramjit; Kaufman, David; Bakker, Jan; Lubinsky, Anthony; Pradhan, Deepak; Sterman, Daniel; Heguy, Adriana; Uyeki, Timothy; Clemente, Jose; de Wit, Emmie; Schmidt, Ann Marie; Shopsin, Bo; Desvignes, Ludovic; Wang, Chan; Li, Huilin; Zhang, Bin; Forst, Christian; Koide, Shohei; Stapleford, Kenneth; Khanna, Kamal; Ghedin, Elodie; Weiden, Michael; Segal, Leopoldo
Mortality among patients with COVID-19 and respiratory failure is high and there are no known lower airway biomarkers that predict clinical outcome. We investigated whether bacterial respiratory infections and viral load were associated with poor clinical outcome and host immune tone. We obtained bacterial and fungal culture data from 589 critically ill subjects with COVID-19 requiring mechanical ventilation. On a subset of the subjects that underwent bronchoscopy, we also quantified SARS-CoV-2 viral load, analyzed the microbiome of the lower airways by metagenome and metatranscriptome analyses and profiled the host immune response. We found that isolation of a hospital-acquired respiratory pathogen was not associated with fatal outcome. However, poor clinical outcome was associated with enrichment of the lower airway microbiota with an oral commensal ( Mycoplasma salivarium ), while high SARS-CoV-2 viral burden, poor anti-SARS-CoV-2 antibody response, together with a unique host transcriptome profile of the lower airways were most predictive of mortality. Collectively, these data support the hypothesis that 1) the extent of viral infectivity drives mortality in severe COVID-19, and therefore 2) clinical management strategies targeting viral replication and host responses to SARS-CoV-2 should be prioritized.
PMCID:8010736
PMID: 33791687
ISSN: n/a
CID: 4830952
Microbial signatures in the lower airways of mechanically ventilated COVID19 patients associated with poor clinical outcome
Sulaiman, Imran; Chung, Matthew; Angel, Luis; Tsay, Jun-Chieh J; Wu, Benjamin G; Yeung, Stephen T; Krolikowski, Kelsey; Li, Yonghua; Duerr, Ralf; Schluger, Rosemary; Thannickal, Sara A; Koide, Akiko; Rafeq, Samaan; Barnett, Clea; Postelnicu, Radu; Wang, Chang; Banakis, Stephanie; Perez-Perez, Lizzette; Jour, George; Shen, Guomiao; Meyn, Peter; Carpenito, Joseph; Liu, Xiuxiu; Ji, Kun; Collazo, Destiny; Labarbiera, Anthony; Amoroso, Nancy; Brosnahan, Shari; Mukherjee, Vikramjit; Kaufman, David; Bakker, Jan; Lubinsky, Anthony; Pradhan, Deepak; Sterman, Daniel H; Weiden, Michael; Hegu, Adriana; Evans, Laura; Uyeki, Timothy M; Clemente, Jose C; De Wit, Emmie; Schmidt, Ann Marie; Shopsin, Bo; Desvignes, Ludovic; Wang, Chan; Li, Huilin; Zhang, Bin; Forst, Christian V; Koide, Shohei; Stapleford, Kenneth A; Khanna, Kamal M; Ghedin, Elodie; Segal, Leopoldo N
Mortality among patients with COVID-19 and respiratory failure is high and there are no known lower airway biomarkers that predict clinical outcome. We investigated whether bacterial respiratory infections and viral load were associated with poor clinical outcome and host immune tone. We obtained bacterial and fungal culture data from 589 critically ill subjects with COVID-19 requiring mechanical ventilation. On a subset of the subjects that underwent bronchoscopy, we also quantified SARS-CoV-2 viral load, analyzed the microbiome of the lower airways by metagenome and metatranscriptome analyses and profiled the host immune response. We found that isolation of a hospital-acquired respiratory pathogen was not associated with fatal outcome. However, poor clinical outcome was associated with enrichment of the lower airway microbiota with an oral commensal ( Mycoplasma salivarium ), while high SARS-CoV-2 viral burden, poor anti-SARS-CoV-2 antibody response, together with a unique host transcriptome profile of the lower airways were most predictive of mortality. Collectively, these data support the hypothesis that 1) the extent of viral infectivity drives mortality in severe COVID-19, and therefore 2) clinical management strategies targeting viral replication and host responses to SARS-CoV-2 should be prioritized.
PMCID:7924286
PMID: 33655261
ISSN: n/a
CID: 4801472
Respiratory viruses in pediatric emergency department patients and their family members
Matienzo, Nelsa; Youssef, Mariam M; Comito, Devon; Lane, Benjamin; Ligon, Chanel; Morita, Haruka; Winchester, Arianna; Decker, Mary E; Dayan, Peter; Shopsin, Bo; Shaman, Jeffrey
BACKGROUND:Respiratory viral infections account for a substantial fraction of pediatric emergency department (ED) visits. We examined the epidemiological patterns of seven common respiratory viruses in children presenting to EDs with influenza-like illness (ILI). Additionally, we examined the co-occurrence of viral infections in the accompanying adults and risk factors associated with the acquisition of these viruses. METHODS:Nasopharyngeal swab were collected from children seeking medical care for ILI and their accompanying adults (Total N = 1315). Study sites included New York Presbyterian, Bellevue, and Tisch hospitals in New York City. PCR using a respiratory viral panel was conducted, and data on symptoms and medical history were collected. RESULTS:Respiratory viruses were detected in 399 children (62.25%) and 118 (17.5%) accompanying adults. The most frequent pathogen detected was human rhinovirus (HRV) (28.81%). Co-infection rates were 14.79% in children and 8.47% in adults. Respiratory syncytial virus (RSV) and parainfluenza infections occurred more often in younger children. Influenza and HRV occurred more often in older children. Influenza and coronavirus were mostly isolated in winter and spring, RSV in fall and winter and HRV in fall and spring. Children with HRV were more likely to have history of asthma. Adults with the same virus as their child often accompanied ≤ 2-year-old-positive children and were more likely to be symptomatic compared to adults with different viruses. CONCLUSIONS:Respiratory viruses, while presenting the same suite of symptoms, possess distinct seasonal cycles and affect individuals differently based on a number of identifiable factors, including age and history of asthma.
PMID: 33210476
ISSN: 1750-2659
CID: 4671342
Diversity of Functionally Distinct Clonal Sets of Human Conventional Memory B Cells That Bind Staphylococcal Protein A
Radke, Emily E; Li, Zhi; Hernandez, David N; El Bannoudi, Hanane; Kosakovsky Pond, Sergei L; Shopsin, Bo; Lopez, Peter; Fenyö, David; Silverman, Gregg J
Staphylococcus aureus, a common cause of serious and often fatal infections, is well-armed with secreted factors that disarm host immune defenses. Highly expressed in vivo during infection, Staphylococcal protein A (SpA) is reported to also contribute to nasal colonization that can be a prelude to invasive infection. Co-evolution with the host immune system has provided SpA with an Fc-antibody binding site, and a Fab-binding site responsible for non-immune superantigen interactions via germline-encoded surfaces expressed on many human BCRs. We wondered whether the recurrent exposures to S. aureus commonly experienced by adults, result in the accumulation of memory B-cell responses to other determinants on SpA. We therefore isolated SpA-specific class-switched memory B cells, and characterized their encoding VH : VL antibody genes. In SpA-reactive memory B cells, we confirmed a striking bias in usage for VH genes, which retain the surface that mediates the SpA-superantigen interaction. We postulate these interactions reflect co-evolution of the host immune system and SpA, which during infection results in immune recruitment of an extraordinarily high prevalence of B cells in the repertoire that subverts the augmentation of protective defenses. Herein, we provide the first evidence that human memory responses are supplemented by B-cell clones, and circulating-antibodies, that bind to SpA determinants independent of the non-immune Fc- and Fab-binding sites. In parallel, we demonstrate that healthy individuals, and patients recovering from S. aureus infection, both have circulating antibodies with these conventional binding specificities. These findings rationalize the potential utility of incorporating specially engineered SpA proteins into a protective vaccine.
PMCID:8113617
PMID: 33995388
ISSN: 1664-3224
CID: 4876542
Active surveillance documents rates of clinical care seeking due to respiratory illness
Galanti, Marta; Comito, Devon; Ligon, Chanel; Lane, Benjamin; Matienzo, Nelsa; Ibrahim, Sadiat; Shittu, Atinuke; Tagne, Eudosie; Birger, Ruthie; Ud-Dean, Minhaz; Filip, Ioan; Morita, Haruka; Rabadan, Raul; Anthony, Simon; Freyer, Greg A; Dayan, Peter; Shopsin, Bo; Shaman, Jeffrey
BACKGROUND:Respiratory viral infections are a leading cause of disease worldwide. However, the overall community prevalence of infections has not been properly assessed, as standard surveillance is typically acquired passively among individuals seeking clinical care. METHODS:We conducted a prospective cohort study in which participants provided daily diaries and weekly nasopharyngeal specimens that were tested for respiratory viruses. These data were used to analyze healthcare seeking behavior, compared with cross-sectional ED data and NYC surveillance reports, and used to evaluate biases of medically attended ILI as signal for population respiratory disease and infection. RESULTS:The likelihood of seeking medical attention was virus-dependent: higher for influenza and metapneumovirus (19%-20%), lower for coronavirus and RSV (4%), and 71% of individuals with self-reported ILI did not seek care and half of medically attended symptomatic manifestations did not meet the criteria for ILI. Only 5% of cohort respiratory virus infections and 21% of influenza infections were medically attended and classifiable as ILI. We estimated 1 ILI event per person/year but multiple respiratory infections per year. CONCLUSION/CONCLUSIONS:Standard, healthcare-based respiratory surveillance has multiple limitations. Specifically, ILI is an incomplete metric for quantifying respiratory disease, viral respiratory infection, and influenza infection. The prevalence of respiratory viruses, as reported by standard, healthcare-based surveillance, is skewed toward viruses producing more severe symptoms. Active, longitudinal studies are a helpful supplement to standard surveillance, can improve understanding of the overall circulation and burden of respiratory viruses, and can aid development of more robust measures for controlling the spread of these pathogens.
PMID: 32415751
ISSN: 1750-2659
CID: 4438372
Convergent Evolution of Neutralizing Antibodies to Staphylococcus aureus γ-Hemolysin C That Recognize an Immunodominant Primary Sequence-Dependent B-Cell Epitope
Hernandez, David N; Tam, Kayan; Shopsin, Bo; Radke, Emily E; Law, Karen; Cardozo, Timothy; Torres, Victor J; Silverman, Gregg J
Staphylococcus aureus infection is a major public health threat in part due to the spread of antibiotic resistance and repeated failures to develop a protective vaccine. Infection is associated with production of virulence factors that include exotoxins that attack host barriers and cellular defenses, such as the leukocidin (Luk) family of bicomponent pore-forming toxins. To investigate the structural basis of antibody-mediated functional inactivation of Luk toxins, we generated a panel of murine monoclonal antibodies (MAbs) that neutralize host cell killing by the γ-hemolysin HlgCB. By biopanning these MAbs against a phage-display library of random Luk peptide fragments, we identified a small subregion within the rim domain of HlgC as the epitope for all the MAbs. Within the native holotoxin, this subregion folds into a conserved β-hairpin structure, with exposed key residues, His252 and Tyr253, required for antibody binding. On the basis of the phage-display results and molecular modeling, a 15-amino-acid synthetic peptide representing the minimal epitope on HlgC (HlgC241-255) was designed, and preincubation with this peptide blocked antibody-mediated HIgCB neutralization. Immunization of mice with HlgC241-255 or the homologous LukS246-260 subregion peptide elicited serum antibodies that specifically recognized the native holotoxin subunits. Furthermore, serum IgG from patients who were convalescent for invasive S. aureus infection showed neutralization of HlgCB toxin activity ex vivo, which recognized the immunodominant HlgC241-255 peptide and was dependent on His252 and Tyr253 residues. We have thus validated an efficient, rapid, and scalable experimental workflow for identification of immunodominant and immunogenic leukotoxin-neutralizing B-cell epitopes that can be exploited for new S. aureus-protective vaccines and immunotherapies.
PMID: 32546616
ISSN: 2150-7511
CID: 4486272
Altered Immunity of Laboratory Mice in the Natural Environment Is Associated with Fungal Colonization
Yeung, Frank; Chen, Ying-Han; Lin, Jian-Da; Leung, Jacqueline M; McCauley, Caroline; Devlin, Joseph C; Hansen, Christina; Cronkite, Alex; Stephens, Zac; Drake-Dunn, Charlotte; Fulmer, Yi; Shopsin, Bo; Ruggles, Kelly V; Round, June L; Loke, P'ng; Graham, Andrea L; Cadwell, Ken
Free-living mammals, such as humans and wild mice, display heightened immune activation compared with artificially maintained laboratory mice. These differences are partially attributed to microbial exposure as laboratory mice infected with pathogens exhibit immune profiles more closely resembling that of free-living animals. Here, we examine how colonization by microorganisms within the natural environment contributes to immune system maturation by releasing inbred laboratory mice into an outdoor enclosure. In addition to enhancing differentiation of T cell populations previously associated with pathogen exposure, outdoor release increased circulating granulocytes. However, these "rewilded" mice were not infected by pathogens previously implicated in immune activation. Rather, immune system changes were associated with altered microbiota composition with notable increases in intestinal fungi. Fungi isolated from rewilded mice were sufficient in increasing circulating granulocytes. These findings establish a model to investigate how the natural environment impacts immune development and show that sustained fungal exposure impacts granulocyte numbers.
PMID: 32209432
ISSN: 1934-6069
CID: 4357852
Unbiased identification of immunogenic Staphylococcus aureus leukotoxin B-cell epitopes
Hernandez, David N; Tam, Kayan; Shopsin, Bo; Radke, Emily; Kolahi, Pegah; Copin, Richard; Stubbe, François-Xavier; Cardozo, Timothy; Torres, Victor J; Silverman, Gregg J
Unbiased identification of individual, immunogenic B-cell epitopes in major antigens of a pathogen remains a technology challenge for vaccine discovery. We therefore developed a platform for rapid phage display screening of deep recombinant libraries consisting of as little as a single major pathogen antigen. Using the bi-component pore-forming leukocidin (Luks) exotoxins of the major pathogen Staphylococcus aureus (Sa) as a prototype, we randomly fragmented and separately ligated the Hemolysin gamma A (HlgA) and LukS genes into a custom-built, phage-display system, termed pComb-Opti8. Deep sequence analysis of barcoded amplimers of the HlgA and LukS gene fragment libraries demonstrated that biopannng against a cross-reactive anti-Luk mAb recovered convergent molecular clones with short overlapping homologous sequences. We thereby identified an 11-amino acid sequence that is highly conserved in four Luk toxin subunits, and is ubiquitous in representation within Sa clinical isolates. The isolated 11-amino acid peptide probe was predicted to retain the native 3D-conformation seen within the Luk holotoxin. Indeed, this peptide was recognized by the selecting anti-Luk mAb, and using mutated peptides we showed that a particular amino acid side-chain was essential for these interactions. Furthermore, murine immunization with this peptide elicited IgG-responses that were highly reactive with both the autologous synthetic peptide and the full-length Luk toxin homologues. Thus, using a gene fragment, phage-display based pipeline, we have identified and validated immunogenic B-cell epitopes that are cross-reactive between members of the pore-forming leukocidin family. This approach could be harnessed to identify novel epitopes for a much needed Sa-protective subunit vaccine.
PMID: 32014894
ISSN: 1098-5522
CID: 4301262