Try a new search

Format these results:

Searched for:

in-biosketch:true

person:keefed01

Total Results:

235


Cardiovascular emergencies in the cancer patient

Keefe, D L
Cardiovascular emergencies in oncology patients include all of the usual cardiac problems, as well as complications of cancer and its therapy. Pericardial effusions and tamponade, cardiac masses, and extrinsic compression of the heart and great vessels by tumor masses, or fluid collections may all occur. Certain tumors may secrete mediators that are directly toxic to the heart; for example, catecholamines are secreted by pheochromocytomas and serotonin is secreted by carcinoid tumors. Tumors can also cause arrhythmias due to the mediators they secret or to direct mechanical irritation of the heart or pericardium. Cancer therapy is also associated with cardiac emergencies. Perioperative myocardial ischemia or infarction, as well as arrhythmias, may complicate surgery. Pericardial effusions and tamponade can follow surgery, radiation, or chemotherapy. Chemotherapy with anthracyclines, mitoxantrone, and trastuzumab may prompt acute and chronic heart failure. 5-Fluorouracil causes coronary spasm in some patients, leading to angina, myocardial infarction, arrhythmias, and/or sudden death. Cyclophosphamide, particularly in high doses, may produce acute myopericarditis. Radiation may cause acute pericardial disease and late sequelae such as myocardial infarction, acute valvular insufficiency, or effusive constrictive pericarditis. Endocarditis also occurs in cancer patients in association with vascular access devices and immune compromise. This review will discuss each of these complications of cancer and its therapy
PMID: 10864214
ISSN: 0093-7754
CID: 102032

Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos

Trimarchi, J R; Liu, L; Porterfield, D M; Smith, P J; Keefe, D L
The self-referencing electrode technique was employed to noninvasively measure gradients of dissolved oxygen in the medium immediately surrounding developing mouse embryos and, thereby, characterized changes in oxygen consumption and utilization during development. A gradient of depleted oxygen surrounded each embryo and could be detected >50 microm from the embryo. Blastocysts depleted the surrounding medium of 0.6+/-0.1 microM of oxygen, whereas early cleavage stage embryos depleted the medium of only 0.3+/-0.1 microM of oxygen, suggesting a twofold increase in oxygen consumption at the blastocyst stage. Mitochondrial oxidative phosphorylation (OXPHOS) accounted for 60-70% of the oxygen consumed by blastocysts, while it accounted for only 30% of the total oxygen consumed by cleavage-stage embryos. The amount of oxygen consumed by non-OXPHOS mechanisms remained relatively constant throughout preimplantation development. By contrast, the amount of oxygen consumed by OXPHOS in blastocysts is greater than that consumed by OXPHOS in cleavage-stage embryos. The amount of oxygen consumed by one-cell embryos was modulated by the absence of pyruvate from the culture medium. Treatment of one-cell embryos and blastocysts with diamide, an agent known to induce cell death in embryos, resulted in a decline in oxygen consumption, such that the medium surrounding dying embryos was not as depleted of oxygen as that surrounding untreated control embryos. Together these results validate the self-referencing electrode technique for analyzing oxygen consumption and utilization by preimplantation embryos and demonstrate that changes in oxygen consumption accompany important physiological events, such as development, response to medium metabolites, or cell death
PMID: 10819794
ISSN: 0006-3363
CID: 102035

Cytoplasm mediates both development and oxidation-induced apoptotic cell death in mouse zygotes

Liu, L; Keefe, D L
Eggs must be the major locus of reproductive aging in women, because donation of eggs from younger to middle-aged women abrogates the effects of age on fertility. Oxidative stress, mitochondrial dysfunction, and apoptosis are associated with senescence. To develop an animal model of egg senescence, we treated mouse zygotes with 175 microM H(2)O(2) that induced mitochondrial dysfunction and developmental arrest, followed by delayed cell death, consistent with apoptosis. We reconstructed zygotes with nuclei and cytoplasm from treated or untreated zygotes, then followed development and apoptotic cell death in the reconstituted embryos. Pronuclear exchange between untreated, normal zygotes served as nuclear transfer controls. Rates of cleavage and development to morula and blastocysts were significantly lower (P<0.01) in zygotes reconstituted from untreated pronuclei and H(2)O(2)-stressed cytoplasts than those of nuclear transfer controls. Instead, the arrested, reconstituted zygotes displayed TUNEL staining at a similar rate to that of H(2)O(2)-treated controls, suggesting that apoptotic potential could be transferred cytoplasmically. On the other hand, rates of cleavage and development to morula and blastocyst of the reconstituted zygotes, derived from stressed pronuclei and untreated cytoplasm, were significantly increased (P<0.05), compared to those of H(2)O(2)-treated, control zygotes, indicating that healthy cytoplasm could partly rescue pronuclei from oxidative stress. Although oxidation stressed both nuclei and cytoplasm, cytoplasm was more sensitive than nuclei to oxidative stress. It is suggested that cytoplasm, most likely mitochondria, plays a central role in mediating both development and apoptotic cell death induced by oxidative stress in mouse zygotes
PMID: 10819789
ISSN: 0006-3363
CID: 102036

Involvement of mitochondria in oxidative stress-induced cell death in mouse zygotes

Liu, L; Trimarchi, J R; Keefe, D L
Accumulation of reactive oxygen species during aging leads to programmed cell death (PCD) in many cell types but has not been explored in mammalian fertilized eggs, in which mitochondria are 'immature,' in contrast to 'mature' mitochondria in somatic cells. We characterized PCD in mouse zygotes induced by either intensive (1 mM for 1.5 h) or mild (200 microM for 15 min) hydrogen peroxide (H(2)O(2)) treatment. Shortly after intensive treatment, zygotes displayed PCD, typified by cell shrinkage, cytochrome c release from mitochondria, and caspase activation, then terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining in condensed pronuclei. On the other hand, after mild treatment, zygotes arrested developmentally and showed neither cytochrome c release nor caspase activation over 48 h; until 72 h, 46% zygotes exhibited TUNEL staining, and 88% of zygotes lost plasma membrane integrity. Interestingly, mild oxidative treatment induced a decline in mitochondrial membrane potential and disruption of the mitochondrial matrix. Taken together, these results suggest that oxidative stress caused by H(2)O(2) induces PCD in mouse zygotes and that mitochondria are involved in the early phase of oxidative stress-induced PCD. Furthermore, mitochondrial malfunction also may contribute to cell cycle arrest, followed by cell death, triggered by mild oxidative stress
PMID: 10819779
ISSN: 0006-3363
CID: 102037

Estrogen modifies the temperature effects of progesterone

Stachenfeld, N S; Silva, C; Keefe, D L
To test the hypothesis that progestin-mediated increases in resting core temperature and the core temperature threshold for sweating onset are counteracted by estrogen, we studied eight women (24 +/- 2 yr) at 27 degrees C rest, during 20 min of passive heating (35 degrees C), and during 40 min of exercise at 35 degrees C. Subjects were tested four times, during the early follicular and midluteal menstrual phases, after 4 wk of combined estradiol-norethindrone (progestin) oral contraceptive administration (OC E+P), and after 4 wk of progestin-only oral contraceptive administration (OC P). The order of the OC P and OC E+P were randomized. Baseline esophageal temperature (T(es)) at 27 degrees C was higher (P < 0.05) in the luteal phase (37.08 +/- 0.21 degrees C) and in OC P (37.60 +/- 0.31 degrees C) but not during OC E+P (37.04 +/- 0.23 degrees C) compared with the follicular phase (36.66 +/- 0.21 degrees C). T(es) remained above follicular phase levels throughout passive heating and exercise during OC P, whereas T(es) in the luteal phase was greater than in the follicular phase throughout exercise (P < 0.05). The T(es) threshold for sweating was also greater in the luteal phase (38.02 +/- 0.28 degrees C) and OC P (38.07 +/- 0.17 degrees C) compared with the follicular phase (37.32 +/- 0.11 degrees C) and OC E+P (37.46 +/- 0.18 degrees C). Progestin administration raised the T(es) threshold for sweating during OC P, but this effect was not present when estrogen was administered with progestin, suggesting that estrogen modifies progestin-related changes in temperature regulation. These data are also consistent with previous findings that estrogen lowers the thermoregulatory operating point
PMID: 10797125
ISSN: 8750-7587
CID: 102038

A non-invasive method for measuring preimplantation embryo physiology

Trimarchi, J R; Liu, L; Porterfield, D M; Smith, P J; Keefe, D L
The physiology of the early embryo may be indicative of embryo vitality and therefore methods for non-invasively monitoring physiological parameters from embryos could improve preimplantation diagnoses. The self-referencing electrophysiological technique is capable of non-invasive measurement of the physiology of individual cells by monitoring the movement of ions and molecules between the cell and the surrounding media. Here we use this technique to monitor gradients of calcium, potassium, oxygen and hydrogen peroxide around individual mouse preimplantation embryos. The calcium-sensitive electrode in self-referencing mode identified a region of elevated calcium concentration (approximately 0.25 pmol) surrounding each embryo. The calcium gradient surrounding embryos was relatively steep, such that the region of elevated calcium extended into the medium only 4 microns from the embryo. By contrast, using an oxygen-sensitive electrode an extensive gradient of reduced dissolved oxygen concentration was measured surrounding the embryo and extended tens of micrometres into the medium. A gradient of neither potassium nor hydrogen peroxide was observed around unperturbed embryos. We also demonstrate that monitoring the physiology of embryos using the self-referencing technique does not compromise their subsequent development. Blastocyts studied with the self-referencing technique implanted and developed to term at the same frequency as did unexamined, control embryos. Therefore, the self-referencing electrode provides a valuable non-invasive technique for studying the physiology and pathophysiology of individual embryos without hindering their subsequent development
PMID: 10840870
ISSN: 0967-1994
CID: 102034

A reliable, noninvasive technique for spindle imaging and enucleation of mammalian oocytes

Liu, L; Oldenbourg, R; Trimarchi, J R; Keefe, D L
Factors affecting the efficiency of animal cloning remain to be elucidated. Enucleation of recipient oocytes is a critical step in cloning procedures and typically is performed by aspirating a portion of the cytoplasm underlying the first polar body. Enucleation is evaluated using epifluorescence after Hoechst staining for DNA, which may disrupt functions of the cytoplast, especially mitochondria. Mitochondrial DNA in Dolly and other cloned sheep has been shown to derive exclusively from recipient oocytes. Not only might evaluation of the aspirated karyoplast portion inadequately reflect the state of the cytoplast, it is also time consuming. Here we report a reliable, noninvasive technique for spindle imaging and enucleation of oocytes using a new microscope, the Pol-Scope. The efficiency of enucleation was 100%, and only 5.5% of the oocytes' mitochondria entered the karyoplast upon Pol-Scope-directed removal of the spindle. Moreover, Pol-Scope imaging of spindles and micromanipulation did not compromise the developmental competence of reconstituted oocytes and cytoplasts
PMID: 10657133
ISSN: 1087-0156
CID: 102039

Thiol oxidation-induced embryonic cell death in mice is prevented by the antioxidant dithiothreitol

Liu, L; Trimarchi, J R; Keefe, D L
The oxidation of cellular sulfhydryl (SH) groups has been implicated in the induction of apoptosis in various types of cells and in the disturbance of the meiotic spindle of murine oocytes during aging. The objective of this study was to determine whether the SH-specific oxidant diamide could inhibit embryo development and induce cell death, and whether the antioxidant dithiothreitol (DTT) could counteract such effects. Exposure of mouse zygotes to diamide for 3 h at 25 or 50 microM (but not 12.5 microM) resulted in cell cycle arrest and cell death with evidence of apoptosis. At higher concentrations (100 or 200 microM), diamide induced necrosis as evidenced by propidium iodide-positive pronuclei within 24 h of treatment. Simultaneous addition of DTT at equimolar concentration prevented these effects. However, when DTT was added later, it was no longer protective. DTT also effectively protected against the thiol-oxidative damage caused by diamide in blastocysts. These results suggest that altering thiol-redox status in zygotes and blastocysts may result in cell cycle arrest, apoptosis, and/or cell death
PMID: 10491658
ISSN: 0006-3363
CID: 102040

Effects of oral contraceptives on body fluid regulation

Stachenfeld, N S; Silva, C; Keefe, D L; Kokoszka, C A; Nadel, E R
To test the hypothesis that estrogen reduces the operating point for osmoregulation of arginine vasopressin (AVP), thirst, and body water balance, we studied nine women (25 +/- 1 yr) during 150 min of dehydrating exercise followed by 180 min of ad libitum rehydration. Subjects were tested six different times, during the early-follicular (twice) and midluteal (twice) menstrual phases and after 4 wk of combined [estradiol-norethindrone (progestin), OC E + P] and 4 wk of norethindrone (progestin only, OC P) oral contraceptive administration, in a randomized crossover design. Basal plasma osmolality (P(osm)) was lower in the luteal phase (281 +/- 1 mosmol/kgH(2)O, combined means, P < 0.05), OC E + P (281 +/- 1 mosmol/kgH(2)O, P < 0.05), and OC P (282 +/- 1 mosmol/kgH(2)O, P < 0. 05) than in the follicular phase (286 +/- 1 mosmol/kgH(2)O, combined means). High plasma estradiol concentration lowered the P(osm) threshold for AVP release during the luteal phase and during OC E + P [x-intercepts, 282 +/- 2, 278 +/- 2, 276 +/- 2, and 280 +/- 2 mosmol/kgH(2)O, for follicular, luteal (combined means), OC E + P, and OC P, respectively; P < 0.05, luteal phase and OC E + P vs. follicular phase] during exercise dehydration, and 17beta-estradiol administration lowered the P(osm) threshold for thirst stimulation [x-intercepts, 280 +/- 2, 279 +/- 2, 276 +/- 2, and 280 +/- 2 mosmol/kgH(2)O for follicular, luteal, OC E + P, and OC P, respectively; P < 0.05, OC E + P vs. follicular phase], without affecting body fluid balance. When plasma 17beta-estradiol concentration was high, P(osm) was low throughout rest, exercise, and rehydration, but plasma arginine vasopressin concentration, thirst, and body fluid retention were unchanged, indicating a lowering of the osmotic operating point for body fluid regulation
PMID: 10484572
ISSN: 8750-7587
CID: 102042

Microinjection of mitochondria into zygotes creates a model for studying the inheritance of mitochondrial DNA during preimplantation development

Rinaudo, P; Niven-Fairchild, T; Buradagunta, S; Massobrio, M; Revelli, A; Keefe, D L
OBJECTIVE: To determine the effect of mutant mitochondria on preimplantation embryo development and of preimplantation embryo development on the survival of mutant mitochondrial DNA. DESIGN: Laboratory research. SETTING: Academic research laboratory. PATIENT(S): None. INTERVENTION(S): Mutant and wild-type mitochondria, fractionated from tissue obtained from a patient with MELAS syndrome, a mitochondrial disease, were microinjected into mouse zygotes. Control zygotes received either no injection or sham injection. MAIN OUTCOME MEASURE(S): Preimplantation embryo development and survival of mutant mitochondrial DNA as determined by polymerase chain reaction analysis. RESULT(S): After microinjection into zygotes, the MELAS mutation could be identified by polymerase chain reaction until the hatched blastocyst stage of embryo development. The survival of MELAS-injected zygotes, observed for 4 days after injection, did not differ from the survival of zygotes injected with wild-type mitochondria or from the survival of uninjected or sham-injected controls. CONCLUSION(S): It appears that preimplantation embryo development does not screen out mitochondrial DNA mutations introduced into fertilized oocytes, and low levels of mutant mitochondrial DNA do not disrupt early embryo development
PMID: 10231056
ISSN: 0015-0282
CID: 102043