Searched for: in-biosketch:true
person:dengf01
Voiding pattern analysis as a surrogate for cystometric evaluation in uroplakin II knockout mice
Hodges, Steve J; Zhou, Ge; Deng, Fang-Ming; Aboushwareb, Tamer; Turner, Chanda; Andersson, Karl-Erik; Santago, Pete; Case, Doug; Sun, Tung-Tien; Christ, George J
PURPOSE: Previous study has shown that the absence of uroplakin II can cause urinary tract dysfunction, including vesicoureteral reflux and renal abnormalities, as well as micturition pattern changes. We developed a simple surrogate measure of bladder function using ultraviolet visualization of urinary voiding patterns in a uroplakin II knockout mouse animal model. MATERIALS AND METHODS: Three male and 3 female WT mice, and 3 male and 3 female uroplakin II knockout mice were evaluated by cystometric analysis and voiding pattern markings. Voiding pattern markings were graded by independent observers on a scale of 1 to 5 according to the degree of dispersion of voided urine. Statistical analysis was then used to correlate voiding dispersion grades with cystometric parameters in the same mice. RESULTS: The degree of dispersion of voiding pattern markings correlated with several measures of bladder function. Specifically the Pearson correlation coefficients for the observed voiding patterns highly correlated with baseline pressure, threshold pressure and intermicturition pressure measurements made during conscious cystometry in these mice (p <0.05). CONCLUSIONS: Ultraviolet visualization of urinary voiding patterns of mice correlated well with certain measures of standard cystometric evaluations. As such, this method provides a simple, noninvasive method of evaluating mouse bladder function. Implementation of this methodology, which can potentially be automated for high throughput analysis, can accelerate the development of novel therapy for certain important aspects of bladder disease/dysfunction
PMID: 18355864
ISSN: 1527-3792
CID: 115885
Urodynamic studies in uroplakin II or III knockout (KO) mice [Meeting Abstract]
Aboushwareb, Tamer A.; Zhou, Ge; Turner, Chanda; Andersson, Kall-Erik; Tar, Moses; Melman, Arnold; Deng, Fang-Ming; Sun, Tung-Tien; Christ, George J.
ISI:000245106500262
ISSN: 0022-5347
CID: 4448292
Urodynamic characterization of mice lacking uroplakin II or III [Meeting Abstract]
Aboushwareb, Tamer; Zho, Ge; Turner, Chanda; Andersson, Karl-Erik; Tar, Moses; Melman, Arnold; Deng, Fang-Ming; Sun, Tung-Tien; Christ, George J.
ISI:000245708704469
ISSN: 0892-6638
CID: 4448312
Voiding patterns in uroplakin II knockout mice [Meeting Abstract]
Hodges, Steven; Zhou, Ge; Deng, Fang-Ming; Abouschwareb, Tamer; Turner, Chanda; Andersson, Karl-Erik; Santago, Pete; Sun, Henry; Christ, George J.
ISI:000245708704436
ISSN: 0892-6638
CID: 4448302
PAX2: a reliable marker for nephrogenic adenoma
Tong, Guo-Xia; Melamed, Jonathan; Mansukhani, Mahesh; Memeo, Lorenzo; Hernandez, Osvaldo; Deng, Fang-Ming; Chiriboga, Luis; Waisman, Jerry
Nephrogenic adenoma is a rare lesion of the urinary tract. The diagnosis usually is straightforward when characteristic microscopic and clinical findings are present, and the entity is familiar. However, misdiagnosis, in particular of adenocarcinoma of the prostate gland, may occur. Immunohistochemical stains often are needed to make such a distinction, but currently available markers offered only partial help. It recently was demonstrated that nephrogenic adenoma in renal transplant patients originated from the renal tubular epithelium. This newly proved, but long sought information may be helpful in the differential diagnosis of neophrogenic adenoma. In this study, we investigated the expression of a renal transcription factor, PAX2, in 39 nonrenal transplant-related nephrogenic adenomas, 100 adenocarcinomas of the prostate gland, and 47 urothelial carcinomas of the urinary tract. A strong and distinct nuclear staining of PAX2 was found in all 39 cases of nephrogenic adenoma (100%), but not in normal prostate tissue, normal urothelium, adenocarcinomas of the prostate gland, and invasive urothelial carcinomas. Focal CD10 was detected in six of 13 nephrogenic adenomas in the superficial papillary component and in normal prostate epithelium, normal urothelium, lymphocytes, adenocarcinoma of the prostate gland, and urothelial carcinoma. There was no uroplakins detected in nephrogenic adenoma. Therefore, these findings are suggesting that nephrogenic adenoma in nonrenal transplant patients may also arise from the renal epithelium, as did the comparable lesions after transplantation. PAX2 is a specific and sensitive immunohistochemical marker in identification and differential diagnosis of nephrogenic adenoma.Modern Pathology advance online publication, 6 January 2006; doi:10.1038/modpathol.3800535
PMID: 16400326
ISSN: 0893-3952
CID: 62129
Cellular basis of urothelial squamous metaplasia: roles of lineage heterogeneity and cell replacement
Liang, Feng-Xia; Bosland, Maarten C; Huang, Hongying; Romih, Rok; Baptiste, Solange; Deng, Fang-Ming; Wu, Xue-Ru; Shapiro, Ellen; Sun, Tung-Tien
Although the epithelial lining of much of the mammalian urinary tract is known simply as the urothelium, this epithelium can be divided into at least three lineages of renal pelvis/ureter, bladder/trigone, and proximal urethra based on their embryonic origin, uroplakin content, keratin expression pattern, in vitro growth potential, and propensity to keratinize during vitamin A deficiency. Moreover, these cells remain phenotypically distinct even after they have been serially passaged under identical culture conditions, thus ruling out local mesenchymal influence as the sole cause of their in vivo differences. During vitamin A deficiency, mouse urothelium form multiple keratinized foci in proximal urethra probably originating from scattered K14-positive basal cells, and the keratinized epithelium expands horizontally to replace the surrounding normal urothelium. These data suggest that the urothelium consists of multiple cell lineages, that trigone urothelium is closely related to the urothelium covering the rest of the bladder, and that lineage heterogeneity coupled with cell migration/replacement form the cellular basis for urothelial squamous metaplasia
PMCID:2171294
PMID: 16330712
ISSN: 0021-9525
CID: 59934
Urothelial umbrella cells of human ureter are heterogeneous with respect to their uroplakin composition: different degrees of urothelial maturity in ureter and bladder?
Riedel, Ina; Liang, Feng-Xia; Deng, Fang-Ming; Tu, Liyu; Kreibich, Gert; Wu, Xue-Ru; Sun, Tung-Tien; Hergt, Michaela; Moll, Roland
Urothelial umbrella cells are characterized by apical, rigid membrane plaques, which contain four major uroplakin proteins (UP Ia, Ib, II and III) forming UPIa/UPII and UPIb/UPIII pairs. These integral membrane proteins are thought to play an important role in maintaining the physical integrity and the permeability barrier function of the urothelium. We asked whether the four uroplakins always coexpress in the entire human lower urinary tract. We stained immunohistochemically (ABC-peroxidase method) paraffin sections of normal human ureter (n = 18) and urinary bladder (n = 10) using rabbit antibodies against UPIa, UPIb, UPII and UPIII; a recently raised mouse monoclonal antibody (MAb), AU1, and two new MAbs, AU2 and AU3, all against UPIII; and mouse MAbs against umbrella cell-associated cytokeratins CK18 and CK20. Immunoblotting showed that AU1, AU2 and AU3 antibodies all recognized the N-terminal extracellular domain of bovine UPIII. By immunohistochemistry, we found that in 15/18 cases of human ureter, but in only 2/10 cases of bladder, groups of normal-looking, CK18-positive umbrella cells lacked both UPIII and UPIb immunostaining. The UPIb/UPIII-negative cells showed either normal or reduced amounts of UPIa and UPII staining. These data were confirmed by double immunofluorescence microscopy. The distribution of the UPIb/UPIII-negative umbrella cells was not correlated with localized urothelial proliferation (Ki-67 staining) or with the distribution pattern of CK20. Similar heterogeneities were observed in bovine but not in mouse ureter. We provide the first evidence that urothelial umbrella cells are heterogeneous as some normal-looking umbrella cells can possess only one, instead of two, uroplakin pairs. This heterogeneity seems more prominent in the urothelium of human ureter than that of bladder. This finding may indicate that ureter urothelium is intrinsically different from bladder urothelium. Alternatively, a single lineage of urothelium may exhibit different phenotypes resulting from extrinsic modulations due to distinct mesenchymal influence and different degrees of pressure and stretch in bladder versus ureter. Additional studies are needed to distinguish these two possibilities and to elucidate the physiological and pathological significance of the observed urothelial and uroplakin heterogeneity
PMID: 15819416
ISSN: 0171-9335
CID: 51032
Roles of uroplakins in plaque formation, umbrella cell enlargement, and urinary tract diseases
Kong, Xiang-Tian; Deng, Fang-Ming; Hu, Ping; Liang, Feng-Xia; Zhou, Ge; Auerbach, Anna B; Genieser, Nancy; Nelson, Peter K; Robbins, Edith S; Shapiro, Ellen; Kachar, Bechara; Sun, Tung-Tien
The apical surface of mouse urothelium is covered by two-dimensional crystals (plaques) of uroplakin (UP) particles. To study uroplakin function, we ablated the mouse UPII gene. A comparison of the phenotypes of UPII- and UPIII-deficient mice yielded new insights into the mechanism of plaque formation and some fundamental features of urothelial differentiation. Although UPIII knockout yielded small plaques, UPII knockout abolished plaque formation, indicating that both uroplakin heterodimers (UPIa/II and UPIb/III or IIIb) are required for plaque assembly. Both knockouts had elevated UPIb gene expression, suggesting that this is a general response to defective plaque assembly. Both knockouts also had small superficial cells, suggesting that continued fusion of uroplakin-delivering vesicles with the apical surface may contribute to umbrella cell enlargement. Both knockouts experienced vesicoureteral reflux, hydronephrosis, renal dysfunction, and, in the offspring of some breeding pairs, renal failure and neonatal death. These results highlight the functional importance of uroplakins and establish uroplakin defects as a possible cause of major urinary tract anomalies and death
PMCID:2172608
PMID: 15611339
ISSN: 0021-9525
CID: 48112
Detection of circulating cancer cells expressing uroplakins and epidermal growth factor receptor in bladder cancer patients
Osman, Iman; Kang, Melissa; Lee, Andy; Deng, Fang-Ming; Polsky, David; Mikhail, Maryann; Chang, Caroline; David, Dexter A; Mitra, Nandita; Wu, Xue-Ru; Sun, Tung-Tien; Bajorin, Dean F
Our purpose was to determine the clinical relevance of the detection of circulating tumor cells (CTCs) expressing urothelial and epithelial markers in bladder cancer patients. Sixty-two patients who presented to Memorial Sloan-Kettering Cancer Center between July 2000 and September 2001 were studied. Peripheral blood was tested by nested RT-PCR assay for uroplakins (UPs) Ia, Ib, II and III as well as for epidermal growth factor receptor (EGFR). We determined the sensitivity and specificity of each individual marker and the combinations of UPIa/UPII and UPIb/UPIII. The latter strategy was based on our data, which showed that UPIa and UPIb form heterodimers with UPII and UPIII, respectively. Forty patients had clinically advanced bladder cancer and 22 had no evidence of disease at the time of assay. Eight of the 22 patients recurred during the follow-up period. All 8 patients were positive at presentation for UPIa/UPII. The combination of UPIa/UPII provided the best sensitivity (75%) of detecting CTCs, with a specificity of 50%. The combination of UPIb/UPIII was the most specific (79%) but had modest sensitivity (31%). Detection of EGFR-positive cells alone and in combination with UPs was inferior to that for UPIa/UPII. Combinations of urothelial markers are superior to single urothelial or epithelial markers in detecting CTCs in bladder cancer patients. Further efforts are under way to confirm the potential predictive value of these markers in a prospectively designed study of a larger cohort of patients.
PMID: 15300806
ISSN: 0020-7136
CID: 44185
Lack of major involvement of human uroplakin genes in vesicoureteral reflux: Implications for disease heterogeneity
Jiang, Songshan; Gitlin, Jordan; Deng, Fang-Ming; Liang, Feng-Xia; Lee, Andy; Atala, Anthony; Bauer, Stuart B; Ehrlich, Garth D; Feather, Sally A; Goldberg, Judith D; Goodship, Judith A; Goodship, Timothy H J; Hermanns, Monika; Hu, Fen Ze; Jones, Katrin E; Malcolm, Sue; Mendelsohn, Cathy; Preston, Robert A; Retik, Alan B; Schneck, Francis X; Wright, Victoria; Ye, Xiang Y; Woolf, Adrian S; Wu, Xue-Ru; Ostrer, Harry; Shapiro, Ellen; Yu, Jun; Sun, Tung-Tien
Lack of major involvement of human uroplakin genes in vesicoureteral reflux: Implications for disease heterogeneity. Background. Primary vesicoureteral reflux (VUR) is a hereditary disorder characterized by the retrograde flow of urine into the ureters and kidneys. It affects about 1% of the young children and is thus one of the most common hereditary diseases. Its associated nephropathy is an important cause of end-stage renal failure in children and adults. Recent studies indicate that genetic ablation of mouse uroplakin (UP) III gene, which encodes a 47 kD urothelial-specific integral membrane protein forming urothelial plaques, causes VUR and hydronephrosis. Methods. To begin to determine whether mutations in UP genes might play a role in human VUR, we genotyped all four UP genes in 76 patients with radiologically proven primary VUR by polymerase chain reaction (PCR) amplification and sequencing of all their exons plus 50 to 150 bp of flanking intronic sequences. Results. Eighteen single nucleotide polymorphisms (SNPs) were identified, seven of which were missense, with no truncation or frame shift mutations. Since healthy relatives of the VUR probands are not reliable negative controls for VUR, we used a population of 90 race-matched, healthy individuals, unrelated to the VUR patients, as controls to perform an association study. Most of the SNPs were not found to be significantly associated with VUR. However, SNP1 of UP Ia gene affecting a C to T conversion and an Ala7Val change, and SNP7 of UP III affecting a C to G conversion and a Pro154Ala change, were marginally associated with VUR (both P= 0.08). Studies of additional cases yielded a second set of data that, in combination with the first set, confirmed a weak association of UP III SNP7 in VUR (P= 0.036 adjusted for both subsets of cases vs. controls). Conclusion. Such a weak association and the lack of families with simple dominant Mendelian inheritance suggest that missense changes of uroplakin genes cannot play a dominant role in causing VUR in humans, although they may be weak risk factors contributing to a complex polygenic disease. The fact that no truncation or frame shift mutations have been found in any of the VUR patients, coupled with our recent finding that some breeding pairs of UP III knockout mice yield litters that show not only VUR, but also severe hydronephrosis and neonatal death, raises the possibility that major uroplakin mutations could be embryonically or postnatally lethal in humans
PMID: 15200408
ISSN: 0085-2538
CID: 43158