Try a new search

Format these results:

Searched for:

in-biosketch:true

person:goldbi05

Total Results:

308


AHA Dietary Guidelines: revision 2000: A statement for healthcare professionals from the Nutrition Committee of the American Heart Association [Guideline]

Krauss, R M; Eckel, R H; Howard, B; Appel, L J; Daniels, S R; Deckelbaum, R J; Erdman, J W Jr; Kris-Etherton, P; Goldberg, I J; Kotchen, T A; Lichtenstein, A H; Mitch, W E; Mullis, R; Robinson, K; Wylie-Rosett, J; St Jeor, S; Suttie, J; Tribble, D L; Bazzarre, T L
PMID: 11062305
ISSN: 0039-2499
CID: 952722

AHA Dietary Guidelines: revision 2000: A statement for healthcare professionals from the Nutrition Committee of the American Heart Association [Guideline]

Krauss, R M; Eckel, R H; Howard, B; Appel, L J; Daniels, S R; Deckelbaum, R J; Erdman, J W Jr; Kris-Etherton, P; Goldberg, I J; Kotchen, T A; Lichtenstein, A H; Mitch, W E; Mullis, R; Robinson, K; Wylie-Rosett, J; St Jeor, S; Suttie, J; Tribble, D L; Bazzarre, T L
PMID: 11056107
ISSN: 0009-7322
CID: 952732

Influence of glucose on production and N-sulfation of heparan sulfate in cultured adipocyte cells

Parthasarathy, N; Gotow, L F; Bottoms, J D; Obunike, J C; Naggi, A; Casu, B; Goldberg, I J; Wagner, W D
Altered lipoprotein lipase regulation associated with diabetes leading to the development of hypertriglyceridemia might be attributed to possible changes in content and the fine structure of heparan sulfate and its associated lipoprotein lipase. Adipocyte cell surface is the primary site of synthesis of lipoprotein lipase and the enzyme is bound to cell surface heparan sulfate proteoglycans via heparan sulfate side chains. In this study, the effect of diabetes on the production of adipocyte heparan sulfate and its sulfation (especially N-sulfation) were examined. Mouse 3T3-L1 adipocytes were exposed to high glucose (25 mM) and low glucose (5.55 mM) in the medium and cell-associated heparan sulfate was isolated and characterized. A significant decrease in total content of heparan sulfate was observed in adipocytes cultured under high glucose as compared to low glucose conditions. The degree of N-sulfation was-assessed through oligosaccharide mapping of heparan sulfate after chemical cleavages involving low pH (1.5) nitrous acid and hydrazinolysis/high pH (4.0) nitrous acid treatments; N-sulfation was found to be comparable between the adipocyte heparan sulfates produced under these glucose conditions. The activity and message levels for N-deacetylase/N-sulfotransferase, the enzyme responsible for N-sulfation in the biosynthesis of heparan sulfate, did not vary in adipocytes whether they were exposed to low or high glucose. While most cells or tissues in diabetic situations produce heparan sulfate with low-charge density concomitant with a decrease in N-sulfation, adipocyte cell system is an exception in this regard. Heparan sulfate from adipocytes cultured in low glucose conditions binds to lipoprotein lipase by the same order of magnitude as that derived from high glucose conditions. It is apparent that adipocytes cultured under high glucose conditions produce diminished levels of heparan sulfate (without significant changes in N-sulfation). In conclusion, it is possible that the reduction in heparan sulfate in diabetes could contribute to the decreased levels of heparan sulfate associated lipoprotein lipase, leading to diabetic hypertriglyceridemia.
PMID: 11129947
ISSN: 0300-8177
CID: 949312

High affinity binding between lipoprotein lipase and lipoproteins involves multiple ionic and hydrophobic interactions, does not require enzyme activity, and is modulated by glycosaminoglycans

Hussain, M M; Obunike, J C; Shaheen, A; Hussain, M J; Shelness, G S; Goldberg, I J
Lipoprotein lipase (LPL) physically associates with lipoproteins and hydrolyzes triglycerides. To characterize the binding of LPL to lipoproteins, we studied the binding of low density lipoproteins (LDL), apolipoprotein (apo) B17, and various apoB-FLAG (DYKDDDDK octapeptide) chimeras to purified LPL. LDL bound to LPL with high affinity (K(d) values of 10(-12) m) similar to that observed for the binding of LDL to its receptors and 1D1, a monoclonal antibody to LDL, and was greater than its affinity for microsomal triglyceride transfer protein. LDL-LPL binding was sensitive to both salt and detergents, indicating the involvement of both hydrophobic and hydrophilic interactions. In contrast, the N-terminal 17% of apoB interacted with LPL mainly via ionic interactions. Binding of various apoB fusion peptides suggested that LPL bound to apoB at multiple sites within apoB17. Tetrahydrolipstatin, a potent enzyme activity inhibitor, had no effect on apoB-LPL binding, indicating that the enzyme activity was not required for apoB binding. LDL-LPL binding was inhibited by monoclonal antibodies that recognize amino acids 380-410 in the C-terminal region of LPL, a region also shown to interact with heparin and LDL receptor-related protein. The LDL-LPL binding was also inhibited by glycosaminoglycans (GAGs); heparin inhibited the interactions by approximately 50% and removal of trace amounts of heparin from LPL preparations increased LDL binding. Thus, we conclude that the high affinity binding between LPL and lipoproteins involves multiple ionic and hydrophobic interactions, does not require enzyme activity and is modulated by GAGs. It is proposed that LPL contains a surface exposed positively charged amino acid cluster that may be important for various physiological interactions of LPL with different biologically important molecules. Moreover, we postulate that by binding to this cluster, GAGs modulate the association between LDL and LPL and the in vivo metabolism of LPL.
PMID: 10882743
ISSN: 0021-9258
CID: 1482022

Delayed catabolism of apoB-48 lipoproteins due to decreased heparan sulfate proteoglycan production in diabetic mice

Ebara, T; Conde, K; Kako, Y; Liu, Y; Xu, Y; Ramakrishnan, R; Goldberg, I J; Shachter, N S
We used wild-type (WT) mice and mice engineered to express either apoB-100 only (B100 mice) or apoB-48 only (B48 mice) to examine the effects of streptozotocin-induced diabetes (DM) on apoB-100- and apoB-48-containing lipoproteins. Plasma lipids increased with DM in WT mice, and fat tolerance was markedly impaired. Lipoprotein profiles showed increased levels and cholesterol enrichment of VLDL in diabetic B48 mice but not in B100 mice. C apolipoproteins, in particular apoC-I in VLDL, were increased. To investigate the basis of the increase in apoB-48 lipoproteins in streptozotocin-treated animals, we characterized several parameters of lipoprotein metabolism. Triglyceride and apoB production rates were normal, as were plasma lipase activity, VLDL glycosaminoglycan binding, and VLDL lipolysis. However, beta-VLDL clearance decreased due to decreased trapping by the liver. Whereas LRP activity was normal, livers from treated mice incorporated significantly less sulfate into heparan sulfate proteoglycans (HSPG) than did controls. Hepatoma (HepG2) cells and endothelial cells cultured in high glucose also showed decreased sulfate and glucosamine incorporation into HSPG. Western blots of livers from diabetic mice showed a decrease in the HSPG core protein, perlecan. Delayed clearance of postprandial apoB-48-containing lipoproteins in DM appears to be due to decreased hepatic perlecan HSPG.
PMCID:378502
PMID: 10862796
ISSN: 0021-9738
CID: 949322

Effect of hyperglycemia and hyperlipidemia on atherosclerosis in LDL receptor-deficient mice: establishment of a combined model and association with heat shock protein 65 immunity

Keren, P; George, J; Shaish, A; Levkovitz, H; Janakovic, Z; Afek, A; Goldberg, I; Kopolovic, J; Keren, G; Harats, D
Diabetes and atherosclerosis have been proposed to be influenced by immune and autoimmune mechanisms. A common incriminated antigen in both disorders is the heat shock protein (HSP)-60/65. In the current study, we established a model combining hyperglycemia with hyperlipidemia in LDL receptor-deficient (LDL-RD) mice and assessed its possible influences on lipid profile, HSP60/65, and atherogenesis. LDL-RD mice were injected either with streptozotocin to induce hyperglycemia or with citrate buffer (control). When hyperglycemia was induced, both study groups were challenged with a high-fat (Western) diet for 6 weeks. Plasma fasting glucose, lipid profile, and antibody levels to HSP65 and oxidized LDL were assessed. At death, the spleens from both groups were evaluated for their proliferative response to HSP65 and the consequent cytokine production. The extent of atherosclerosis was assessed at the aortic sinus. Plasma glucose, cholesterol, and triglyceride levels were elevated in mice injected with streptozotocin compared with control mice. Atherosclerotic lesions were significantly larger in the streptozotocin-injected hyperglycemic LDL-RD mice (132 +/- 23 x 10(5) microm2) in comparison to their normoglycemic litter-mates (20 +/- 6.6 x 10(5) microm2; P < 0.0001). Both humoral and cellular immune response to HSP65 was more pronounced in streptozotocin-injected mice. When challenged with HSP65 in vitro, splenocytes from streptozotocin-injected mice favored the production of the T-helper (TH)-1 cytokine gamma-interferon. In conclusion, we have established a mouse model that combines hyperglycemia with diet-induced hyperlipidemia in LDL-RD mice and studied its effect on atherosclerosis progression. The accelerated atherosclerotic process is associated with heightened immune response to HSP65 and a shift to a TH1 cytokine profile.
PMID: 10866061
ISSN: 0012-1797
CID: 955632

Circulating lipoprotein profiles are modulated differently by lipoprotein lipase in obese humans

Goldberg, I J; Vanni-Reyes, T; Ramakrishnan, S; Holleran, S; Ginsberg, H N
BACKGROUND: Several genetic analyses have suggested that lipoprotein lipase (LpL) genotypes causing decreased LpL activity correlate with increased triglyceride concentrations and risk for coronary artery disease. In contrast, in some other studies LpL activity was positively correlated with plasma low-density lipoprotein (LDL) cholesterol concentrations. OBJECTIVE: To assess whether these different associations represent physiologic differences in lipoprotein metabolism. METHODS: We correlated postheparin lipase activities, postprandial lipemia, and fasting lipoprotein concentrations in obese (BMI > or = 30 kg/m2, n = 26) and non-obese (BMI < or = 30 kg/m2, n = 57) individuals. LpL was measured using specific inhibitory antibodies. RESULTS: Surprisingly, LpL activity was significantly correlated with triglyceride area under the curve after a fat load in the non-obese, but not the entire group. Moreover, in non-obese individuals, LpL activity correlated directly (r = 0.40) and hepatic lipase activity correlated inversely (r = -0.32) with high-density lipoprotein (HDL) cholesterol concentrations. These relationships were not found in the obese group, in whom LpL correlated with LDL cholesterol concentrations (r = 0.54). CONCLUSIONS: We conclude that postheparin LpL activity relates to different lipoproteins in obese and non-obese individuals. In obesity, greater LpL activity may enhance conversion of very-low-density lipoprotein cholesterol to LDL cholesterol, whereas in non-obese individuals the correlation is with HDL cholesterol. Whether this is due to differences in the source of LpL (muscle or fat), or to other associated alterations in lipoprotein metabolism is unknown. These results may explain the non-uniformity of correlations between LpL and atherogenic lipoproteins in different populations.
PMID: 10785873
ISSN: 1350-6277
CID: 952662

The heparin-binding proteins apolipoprotein E and lipoprotein lipase enhance cellular proteoglycan production

Obunike, J C; Pillarisetti, S; Paka, L; Kako, Y; Butteri, M J; Ho, Y Y; Wagner, W D; Yamada, N; Mazzone, T; Deckelbaum, R J; Goldberg, I J
Apolipoprotein E (apoE) and lipoprotein lipase (LPL), key proteins in the regulation of lipoprotein metabolism, bind with high affinity to heparin and cell-surface heparan sulfate proteoglycan (HSPG). In the present study, we tested whether the expression of apoE or LPL would modulate proteoglycan (PG) metabolism in cells. Two apoE-expressing cells, macrophages and fibroblasts, and LPL-expressing Chinese hamster ovary (CHO) cells were used to study the effect of apoE and LPL on PG production. Cellular PGs were metabolically labeled with (35)[S]sulfate for 20 hours, and medium, pericellular PGs, and intracellular PGs were assessed. In all transfected cells, PG levels in the 3 pools increased 1.6- to 3-fold when compared with control cells. Initial PG production was assessed from the time of addition of radiolabeled sulfate; at 1 hour, there was no difference in PG synthesis by apoE-expressing cells when compared with control cells. After 1 hour, apoE-expressing cells had significantly greater production of PGs. Total production assessed with [(3)H]glucosamine was also increased. This was due to an increase in the length of the glycosaminoglycan chains. To assess whether the increase in PGs was due to a decrease in PG degradation, a pulse-chase experiment was performed. Loss of sulfate-labeled pericellular PGs was similar in apoE and control cells, but more labeled PGs appeared in the medium of the apoE-expressing cells. Addition of exogenous apoE and anti-human apoE antibody to both non-apoE-expressing and apoE-expressing cells did not alter PG production. Moreover, LPL addition did not alter cell-surface PG metabolism. These results show that enhanced gene expression of apoE and LPL increases cellular PG production. We postulate that such changes in vascular PGs can affect the atherogenic potential of arteries.
PMID: 10634807
ISSN: 1079-5642
CID: 1482032

Perlecan mediates the antiproliferative effect of apolipoprotein E on smooth muscle cells. An underlying mechanism for the modulation of smooth muscle cell growth?

Paka, L; Goldberg, I J; Obunike, J C; Choi, S Y; Saxena, U; Goldberg, I D; Pillarisetti, S
Apolipoprotein E (apoE) is known to inhibit cell proliferation; however, the mechanism of this inhibition is not clear. We recently showed that apoE stimulates endothelial production of heparan sulfate (HS) enriched in heparin-like sequences. Because heparin and HS are potent inhibitors of smooth muscle cell (SMC) proliferation, in this study we determined apoE effects on SMC HS production and cell growth. In confluent SMCs, apoE (10 microg/ml) increased (35)SO(4) incorporation into PG in media by 25-30%. The increase in the medium was exclusively due to an increase in HSPGs (2.2-fold), and apoE did not alter chondroitin and dermatan sulfate proteoglycans. In proliferating SMCs, apoE inhibited [(3)H]thymidine incorporation into DNA by 50%; however, despite decreasing cell number, apoE increased the ratio of (35)SO(4) to [(3)H]thymidine from 2 to 3.6, suggesting increased HS per cell. Purified HSPGs from apoE-stimulated cells inhibited cell proliferation in the absence of apoE. ApoE did not inhibit proliferation of endothelial cells, which are resistant to heparin inhibition. Analysis of the conditioned medium from apoE-stimulated cells revealed that the HSPG increase was in perlecan and that apoE also stimulated perlecan mRNA expression by >2-fold. The ability of apoE isoforms to inhibit cell proliferation correlated with their ability to stimulate perlecan expression. An anti-perlecan antibody completely abrogated the antiproliferative effect of apoE. Thus, these data show that perlecan is a potent inhibitor of SMC proliferation and is required to mediate the antiproliferative effect of apoE. Because other growth modulators also regulate perlecan expression, this may be a key pathway in the regulation of SMC growth.
PMID: 10593935
ISSN: 0021-9258
CID: 1482042

Streptozotocin-induced diabetes in human apolipoprotein B transgenic mice. Effects on lipoproteins and atherosclerosis

Kako, Y; Huang, L S; Yang, J; Katopodis, T; Ramakrishnan, R; Goldberg, I J
The effects of diabetes and lipoprotein lipase (LpL) on plasma lipids were studied in mice expressing human apolipoprotein B (HuBTg). Our overall objective was to produce a diabetic mouse model in which the sole effects of blood glucose elevation on atherosclerosis could be assessed. Mice were made diabetic by intraperitoneal injection of streptozotocin, which led to a 2- to 2. 5-fold increase in plasma glucose. Lipids were assessed in mice on chow and on an atherogenic Western type diet (WTD), consisting of 21% (wt/wt) fat and 0.15% (wt/wt) cholesterol. Plasma triglyceride and cholesterol were the same in diabetic and non-diabetic mice on the chow diet. On the WTD, male diabetic HuBTg mice had a >50% increase in plasma cholesterol and more very low density lipoprotein (VLDL) cholesterol and triglyceride as assessed by FPLC analysis. A Triton study showed no increase in triglyceride or apolipoprotein B production, suggesting that the accumulation of VLDL was due to a decrease in lipoprotein clearance. Surprisingly, the VLDL increase in these mice was not due to a decrease in LpL activity in postheparin plasma. To test whether LpL overexpression would alter these diabetes-induced lipoprotein changes, HuBTg mice were crossed with mice expressing human LpL in muscle. LpL overexpression reduced plasma triglyceride, but not cholesterol, in male mice on WTD. Aortic root atherosclerosis assessed in 32-week-old mice on the WTD was not greater in diabetic mice. In summary, diabetes primarily increased plasma VLDL in HuBTg mice. LpL activity was not decreased in these animals. However, additional LpL expression eliminated the diabetic lipoprotein changes. These mice did not have more atherosclerosis with diabetes.
PMID: 10588944
ISSN: 0022-2275
CID: 949332