Try a new search

Format these results:

Searched for:

in-biosketch:true

person:goldbi05

Total Results:

304


Subendothelial retention of lipoprotein (a). Evidence that reduced heparan sulfate promotes lipoprotein binding to subendothelial matrix

Pillarisetti, S; Paka, L; Obunike, J C; Berglund, L; Goldberg, I J
Vessel wall subendothelial extracellular matrix, a dense mesh formed of collagens, fibronectin, laminin, and proteoglycans, has important roles in lipid and lipoprotein retention and cell adhesion. In atherosclerosis, vessel wall heparan sulfate proteoglycans (HSPG) are decreased and we therefore tested whether selective loss of HSPG affects lipoprotein retention. A matrix synthesized by aortic endothelial cells and a commercially available matrix (Matrigel; , Rutherford, NJ) were used. Treatment of matrix with heparinase/heparitinase (1 U/ml each) increased LDL binding by approximately 1.5-fold. Binding of lipoprotein (a) [Lp(a)] to both subendothelial matrix and Matrigel(R) increased 2-10-fold when the HSPG were removed by heparinase treatment. Incubation of endothelial cells with oxidized LDL (OxLDL) or lysolecithin resulted in decreased matrix proteoglycans and increased Lp(a) retention by matrix. The effect of OxLDL or lysolecithin on endothelial PG was abolished in the presence of HDL. The decrease in matrix HSPG was associated with production of a heparanase-like activity by OxLDL-stimulated endothelial cells. To test whether removal of HSPG exposes fibronectin, a candidate Lp(a) binding protein in the matrix, antifibronectin antibodies were used. The increased Lp(a) binding after HSPG removal was inhibited 60% by antifibronectin antibodies. Similarly, the increased Lp(a) binding to matrix from OxLDL-treated endothelial cells was inhibited by antifibronectin antibodies. We hypothesize that atherogenic lipoproteins stimulate endothelial cell production of heparanase. This enzyme reduces HSPG which in turn promotes Lp(a) retention.
PMCID:508259
PMID: 9259586
ISSN: 0021-9738
CID: 1482062

Lipoprotein lipase regulates Fc receptor-mediated phagocytosis by macrophages maintained in glucose-deficient medium

Yin, B; Loike, J D; Kako, Y; Weinstock, P H; Breslow, J L; Silverstein, S C; Goldberg, I J
During periods of intense activity such as phagocytosis, macrophages are thought to derive most of their energy from glucose metabolism under both aerobic and anaerobic conditions. To determine whether fatty acids released from lipoproteins by macrophage lipoprotein lipase (LPL) could substitute for glucose as a source of energy for phagocytosis, we cultured peritoneal macrophages from normal and LPL knockout (LPL-KO) mice that had been rescued from neonatal demise by expression of human LPL via the muscle creatine kinase promoter. Normal and LPL-KO macrophages were cultured in medium containing normal (5 mM) or low (1 mM) glucose, and were tested for their capacity to phagocytose IgG-opsonized sheep erythrocytes. LPL-KO macrophages maintained in 1 and 5 mM glucose phagocytosed 67 and 79% fewer IgG-opsonized erythrocytes, respectively, than macrophages from normal mice. Addition of VLDL to LPL-expressing macrophages maintained in 1 mM glucose enhanced the macrophages' phagocytosis of IgG-opsonized erythrocytes, but did not stimulate phagocytosis by LPL-KO macrophages. Inhibition of secreted LPL with a monoclonal anti-LPL antibody or with tetrahydrolipstatin blocked the ability of VLDL to enhance phagocytosis by LPL-expressing macrophages maintained in 1 mM glucose. Addition of oleic acid significantly enhanced phagocytosis by both LPL-expressing and LPL-KO macrophages maintained in 1 mM glucose. Moreover, oleic acid stimulated phagocytosis in cells cultured in non-glucose-containing medium, and increased the intracellular stores of creatine phosphate. Inhibition of oxidative phosphorylation, but not of glycolysis, blocked the capacity of oleic acid to stimulate phagocytosis. Receptor-mediated endocytosis of acetyl LDL by macrophages from LPL-expressing and LPL-KO mice was similar whether the cells were maintained in 5 or 1 mM glucose, and was not augmented by VLDL. We postulate that fatty acids derived from macrophage LPL-catalyzed hydrolysis of triglycerides and phospholipids provide energy for macrophages in areas that have limited amounts of ambient glucose, and during periods of intense metabolic activity.
PMCID:508233
PMID: 9239412
ISSN: 0021-9738
CID: 952772

Lipoprotein lipase can function as a monocyte adhesion protein

Obunike, J C; Paka, S; Pillarisetti, S; Goldberg, I J
Lipoprotein lipase (LPL) is made by several cell types, including macrophages within the atherosclerotic lesion. LPL, a dimer of identical subunits, has high affinity for heparin and cell surface heparan sulfate proteoglycans (HSPGs). Several studies have shown that cell surface HSPGs can mediate cell binding to adhesion proteins. Here, we tested whether LPL, by virtue of its HSPG binding could mediate monocyte adhesion to surfaces. Monocyte binding to LPL-coated (1-25 micrograms/mL) tissue culture plates was 1.4- to 7-fold higher than that of albumin-treated plastic. Up to 3-fold more monocytes bound to the subendothelial matrix that had been pretreated with LPL. LPL also doubled the number of monocytes that bound to endothelial cells (ECs). Heparinase and heparitinase treatment of monocytes or incubation of monocytes with heparin decreased monocyte binding to LPL. Heparinase/heparitinase treatment of the matrix also abolished the LPL-mediated increase in monocyte binding. These results suggest that LPL dimers mediate monocyte binding by forming a "bridge" between matrix and monocyte surface HSPGs. Inhibition of LPL activity with tetrahydrolipstatin, a lipase active-site inhibitor, did not affect the LPL-mediated monocyte binding. To assess whether specific oligosaccharide sequences in HSPGs mediated monocyte binding to LPL, competition experiments were performed by using known HSPG binding proteins. Neither antithrombin nor thrombin inhibited monocyte binding to LPL. Next, we tested whether integrins were involved in monocyte binding to LPL. Surprisingly, monocyte binding to LPL-coated plastic and matrix was inhibited by approximately 35% via integrin-binding arginine-glycine-aspartic acid peptides. This result suggests that monocyte binding to LPL was mediated, in part, by monocyte cell surface integrins. In summary, our data show that LPL, which is present on ECs and in the subendothelial matrix, can augment monocyte adherence. This increase in monocyte-matrix interaction could promote macrophage accumulation within arteries.
PMID: 9261275
ISSN: 1079-5642
CID: 1482072

A mouse model with features of familial combined hyperlipidemia

Masucci-Magoulas, L; Goldberg, I J; Bisgaier, C L; Serajuddin, H; Francone, O L; Breslow, J L; Tall, A R
Familial combined hyperlipidemia (FCHL) is a common inherited lipid disorder, affecting 1 to 2 percent of the population in Westernized societies. Individuals with FCHL have large quantities of very low density lipoprotein (VLDL) and low density lipoprotein (LDL) and develop premature coronary heart disease. A mouse model displaying some of the features of FCHL was created by crossing mice carrying the human apolipoprotein C-III (APOC3) transgene with mice deficient in the LDL receptor. A synergistic interaction between the apolipoprotein C-III and the LDL receptor defects produced large quantities of VLDL and LDL and enhanced the development of atherosclerosis. This mouse model may provide clues to the origin of human FCHL.
PMID: 8994037
ISSN: 0036-8075
CID: 952782

Lipoprotein lipase degradation by adipocytes: receptor-associated protein (RAP)-sensitive and proteoglycan-mediated pathways

Obunike, J C; Sivaram, P; Paka, L; Low, M G; Goldberg, I J
Lipoprotein lipase (LPL), the major enzyme responsible for the hydrolysis of triglycerides, is primarily synthesized by adipocytes and myocytes. In addition to synthesis, degradation of cell surface-associated LPL is thought to be important in regulating production of the enzyme. We studied LPL metabolism in the LPL synthesizing adipocyte cell line BFC-1 beta and assessed the contributions of cell surface heparan sulfate proteoglycans (HSPG), low density lipoprotein receptor related protein (LRP), and glycosylphosphatidylinositol (GPI)-linked proteins to LPL uptake and degradation by these cells. Adipocytes degraded 10-12% of total cell surface I-labeled LPL in 2 h and 23-28% in 4 h. In 1 h, 30-54% of the degradation was inhibited by the 39 kDa receptor associated protein (RAP), an inhibitor of ligand binding to LRP. At 4 h, only 19-23% of the LPL degradation was RAP inhibitable. This suggested that two pathways with different kinetics were important for LPL degradation. Heparinase/heparitinase treatment of cells showed that most LPL degradation required the presence of HSPG. Treatment with phosphatidylinositol-specific phospholipase C (PIPLC) inhibited 125I-labeled LPL degradation by 13%. However, neither RAP nor PIPLC treatment of adipocytes significantly increased the amount of endogenously produced LPL activity in the media. To determine whether direct uptake of LPL bound to HSPG could account for the non-RAP sensitive LPL uptake and degradation, proteoglycan metabolism was assessed by labeling cells with 35SO4. Of the total pericellular proteoglycans, 14% were PIPLC releasable; surprisingly, 30% were dissociated from the cells with heparin. The amount of labeled pericellular proteoglycans decreased 26% in 2 h and 50% in 8 h, rapid enough to account for at least half of the degradation of cell surface LPL. We conclude that adipocytes degrade a fraction of the cell surface LPL, and that this process is mediated by both proteoglycans and RAP-sensitive receptors.
PMID: 8978495
ISSN: 0022-2275
CID: 1482082

Lipoprotein lipase can function as a monocyte adhesion protein [Meeting Abstract]

Obunike, JC; Pillarisetti, S; Paka, S; Sasaki, A; Goldberg, IJ
ISI:A1996VN11902295
ISSN: 0009-7322
CID: 2273172

Lysolecithin-induced alteration of subendothelial heparan sulfate proteoglycans increases monocyte binding to matrix

Sivaram, P; Obunike, J C; Goldberg, I J
The cause and consequence of altered proteoglycans in atherosclerosis are poorly understood. To determine whether proteoglycans affect monocyte binding, we studied the effects of heparin and proteoglycan degrading enzymes on THP-1 monocyte adhesion to subendothelial matrix (SEM). Monocyte binding increased about 2-fold after SEM was treated with heparinase. In addition, heparin decreased monocyte binding to fibronectin, a known SEM protein, by 60%. These data suggest that SEM heparan sulfate inhibits monocyte binding to SEM proteins. We next examined whether lysolecithin, a constituent of modified lipoproteins, affects endothelial heparan sulfate proteoglycan (HSPG) production and monocyte binding. Lysolecithin (10-200 microM) decreased total 35SO4 in SEM (20-75%). 2-fold more monocytes bound to SEM from lysolecithin treated cells than to control SEM. Heparinase treatment did not further increase monocyte binding to lysolecithin-treated SEM. HSPG degrading activity was found in medium from lysolecithin-treated but not control cells. 35SO4-labeled products obtained from labeled matrix treated with lysolecithin-conditioned medium were similar in size to those generated by heparinase. These data suggest that lysolecithin-treated endothelial cells secrete a heparanase-like activity. We hypothesize that decreased vessel wall HSPG, as occurs in atherogenic conditions, allows increased monocyte retention within the vessel and is due to the actions of an endothelial heparanase.
PMID: 8530367
ISSN: 0021-9258
CID: 1482092

Differentiated macrophages synthesize a heparan sulfate proteoglycan and an oversulfated chondroitin sulfate proteoglycan that bind lipoprotein lipase

Edwards, I J; Xu, H; Obunike, J C; Goldberg, I J; Wagner, W D
Lipoprotein lipase (LpL), which facilitates lipoprotein uptake by macrophages, associates with the cell surface by binding to proteoglycans (PGs). Studies were designed to identify and characterize specific PGs that serve as receptors for LpL and to examine effects of cell differentiation on LpL binding. PG synthesis was examined by radiolabeling THP-1 monocytes and macrophages (a cell line originally derived from a patient with acute monocytic leukemia) with [35S]sodium sulfate and [3H]serine or [3H]glucosamine. Radiolabeled PGs isolated from the cell surface were purified by chromatography and identified as chondroitin-4-sulfate (CS) PG and heparan sulfate (HS) PG. A sixfold increase in CSPG and an 11-fold increase in HSPG accompanied cell differentiation. Whereas HS glycosaminoglycan chains from both monocytes and macrophages were 7.5 kD in size, CS chains increased in size from 17 kD to 36 kD with cell differentiation, and contained hexuronyl N-acetylgalactosamine-4,6-di-O sulfate disaccharides. LpL binding was sevenfold higher to differentiated cells, and affinity chromatography demonstrated that two cell surface PGs bound to LpL: HSPG and the oversulfated CSPG produced only by differentiated cells. We conclude that differentiation-associated changes in cell surface PG of human macrophages have functional consequences that could increase the atherogenic potential of the cells.
PMID: 7749850
ISSN: 1079-5642
CID: 1482102

Human ApoA-II inhibits the hydrolysis of HDL triglyceride and the decrease of HDL size induced by hypertriglyceridemia and cholesteryl ester transfer protein in transgenic mice

Zhong, S; Goldberg, I J; Bruce, C; Rubin, E; Breslow, J L; Tall, A
The plasma cholesteryl ester transfer protein (CETP) mediates the exchange of HDL cholesteryl esters with triglycerides of other lipoproteins. Subsequent lipolysis of the triglyceride-enriched HDL by hepatic lipase leads to reductions of HDL size and apoA-I content. To investigate a possible modulation of the effects of CETP by apoA-II, human CETP transgenic mice were cross-bred with transgenic mice expressing human apoA-II and, in some cases, human apoA-I and apoC-III (with human-like HDL and hypertriglyceridemia). CETP expression resulted in reductions of HDL and increases in VLDL cholesteryl ester in mice expressing human apoA-II, alone or in combination with apoA-I and apoC-III, indicating that apoA-II does not inhibit the cholesteryl ester transfer activity of CETP. However, CETP expression resulted in more prominent increases in HDL triglyceride in mice expressing both apoA-II and CETP, especially in CETP/apoA-II/apoAI-CIII transgenic mice. CETP expression caused dramatic reductions in HDL size and apoA-I content in apoAI-CIII transgenic mice, but not in apoA-II/AI-CIII transgenic mice. HDL prepared from mice of various genotypes showed inhibition of emulsion-based hepatic lipase activity in proportion to the apoA-II/apoA-I ratio of HDL. The presence of human apoA-II also inhibited mouse plasma hepatic lipase activity on HDL triglyceride. Thus, apoA-II does not inhibit the lipid transfer activity of CETP in vivo. However, coexpression of apoA-II with CETP results in HDL particles that are more triglyceride enriched and resistant to reductions in size and apoA-I content, reflecting inhibition of hepatic lipase by apoA-II. The inhibition of HDL remodeling by apoA-II could explain the relatively constant levels of HDL containing both apoA-I and apoA-II in human populations.
PMCID:330078
PMID: 7989603
ISSN: 0021-9738
CID: 952792

Lipoprotein lipase hydrolysis of retinyl ester. Possible implications for retinoid uptake by cells

Blaner, W S; Obunike, J C; Kurlandsky, S B; al-Haideri, M; Piantedosi, R; Deckelbaum, R J; Goldberg, I J
Adipose tissue contains substantial stores of retinoid (retinol+retinyl ester) that, quantitatively, are second only to retinoid stores in the liver. Our studies show that retinoid levels in adipose tissue are markedly influenced by dietary retinoid intake. Because lipoprotein lipase (LPL) increases the uptake of lipoproteins and lipid emulsion particles by many cell types including adipocytes, we investigated whether LPL also increases retinoid uptake by adipocytes from lipid-containing particles. Addition of LPL (10 micrograms/ml) to BFC-1 beta adipocytes produced a 2-fold increase in cellular uptake of [3H]retinoid from a lipid emulsion containing [3H]retinyl ester. Heparin, which displaces LPL from binding sites on cell surface proteoglycans, increased [3H]retinoid uptake by an additional 2-fold. High performance liquid chromatography analyses showed that greater than 75% of the media and 85% of the cellular radioactivity was present as retinol. The conversion of retinyl ester to retinol by LPL was then assessed using model retinyl ester containing lipid emulsions. Although triglyceride appears to be the preferred substrate for LPL, after greater than 25% of the triglyceride was hydrolyzed, significant amounts of retinyl ester were hydrolyzed by LPL. Retinyl ester hydrolysis was increased approximately 20-fold in the presence of a source of apolipoprotein C-II. The physiologically significant palmitate, stearate, oleate, and linoleate esters of retinol were all hydrolyzed by LPL. When LPL was incubated with [3H]retinyl ester containing rabbit mesenteric chylomicrons and in the presence of heparin and apolipoprotein C-II, the LPL was able to completely hydrolyze the retinyl ester to retinol. Thus, LPL is able to catalyze the hydrolysis of retinyl esters and, through the process of hydrolysis, may facilitate uptake of retinoid by adipocytes.
PMID: 8206972
ISSN: 0021-9258
CID: 1482112